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SUMMARY

Recent evidence suggests that the hippocampus
may integrate overlapping memories into relational
representations, or schemas, that link indirectly
related events and support flexible memory expres-
sion. Here we explored the nature of hippocampal
neural population representations for multiple fea-
tures of events and the locations and contexts in
which they occurred. Hippocampal networks devel-
oped hierarchical organizations of associated ele-
ments of related but separately acquired memories
within a context, and distinct organizations for
memories where the contexts differentiated object-
reward associations. These findings reveal neural
mechanisms for the development and organization
of relational representations.

INTRODUCTION

Recent research on the nature of memory representations in the

hippocampus has emphasized a competition between pattern

completion of a new experience to a previously stored repre-

sentation versus pattern separation to an entirely novel repre-

sentation in order to minimize interference between memory

representations for similar events (Vazdarjanova and Guzowski,

2004; Deng et al., 2013; Colgin et al., 2010; Wills et al., 2005;

Leutgeb et al., 2004; Lee et al., 2004; Bakker et al., 2008; Norman

and O’Reilly, 2003; Hasselmo and Wyble, 1997). However, in

direct contrast to this competitive mechanism that separates

overlapping memories, an alternative view is that the hippocam-

pus systematically organizes multiple overlapping memories to

form relational networks, and these networks serve as knowl-

edge structures, or schemas, that rapidly assimilate additional

related memories (Eichenbaum, 2004; McKenzie and Eichen-

baum, 2011; van Kesteren et al., 2010; Tse et al., 2007; Shohamy

and Wagner, 2008; Zeithamova et al., 2012). A large literature

supports the role of the hippocampus in relational representation

and schema development, including studies in which intact but

not hippocampal-damaged animals integrate overlapping mem-

ories (Dusek and Eichenbaum, 1997, Devito et al., 2010; Bunsey

and Eichenbaum, 1996; Buckmaster et al., 2004; Tse et al., 2007)

and complementary functional imaging studies in humans that
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have identified hippocampal activation associatedwith success-

ful integration of related memories (Wimmer and Shohamy 2012;

Kumaran et al., 2009, 2012; Shohamy and Wagner 2008; Heck-

ers et al., 2004; Greene et al., 2006; Zeithamova and Preston,

2010; Zeithamova et al., 2012; Poppenk et al., 2010; Preston

et al., 2004; van Kesteren et al., 2010, 2012). Nevertheless,

despite the established link between hippocampal function

and relational representation and schema development, little is

known about how neuronal populations in the hippocampus

encode and organize related memories and whether and how

pattern completion and separation mechanisms operate in

these organizations.

Here we designed a task in which rats acquired memories that

could be related in several ways including multiple features of

events and where they occurred (Figure 1A). On each trial,

rats entered one of two distinct spatial contexts and were pre-

sented with two objects located in either of two positions. In

context 1, object A was rewarded, and not object B, whereas

in context 2, object B was rewarded, not object A. Thus, the

animals were required to use the spatial context to determine

the appropriate object-reward associations. Previously, we

have reported that single CA1 and CA3 neurons fire during stim-

ulus sampling associated with multiple relevant stimulus dimen-

sions, including object identity, location within a context, and

context (Komorowski et al., 2009, 2013). Here we expanded

the task to subsequently train the rats on an additional object

set (C and D) within the same contexts. Following recent studies

showing that high-dimensional neural representations in other

brain areas can support complex cognitive functions (Ross

et al., 2014; Rigotti et al., 2013), we employed a representational

similarity analysis (Kriegeskorte et al., 2008) on simultaneously

recorded hippocampal populations to reveal a hierarchical

organization of distinct event and spatial features of the task,

constituting the neural substrate of relational representation

and schema structure.
RESULTS

Rats Acquire a Schema for Context-Guided Object
Associations
To examine whether rats develop a capacity for rapid acquisi-

tion of new context-guided object associations, we trained a

group of nonimplanted animals on three successive context-

guided object association problems (Figure 1A). On the initial
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Figure 1. Rats Rapidly Learn Item and Context Associations

(A) Training protocol: rats initially learn problem set XY, then in a new pairs of contexts, problem sets AB and then CD.

(B) While learning XY, trials to criteria in context 0 was strongly correlated with that in context 00.

(C) After initial XY learning, rats rapidly acquired AB and CD.

(D) Performance across all 9 days of training. Rats performed above chance on AB by the fifth trial block on the first day of training (day 1: AB1). In contrast, rats

performed above chance on CD on the second trial block on the first day in which those items were introduced (day 4: CD1). There were 15 trials per block. Error

bars represent SEM.
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problem (in context 0 choose item X; in context 00 choose

item Y) rats performed better than chance (83% correct for

12 consecutive trials) in each context by 202 ± 23.8 trials

over 7.0 ± 0.7 days (mean ± SE). Learning curves for perfor-

mance within each context were analyzed separately to deter-

mine the trial after which animals performed consistently above

chance. The number of trials to criterion within each context

was strongly correlated (r = 0.995, p < 0.0004, slope = 0.89;

Figure 1B), suggesting that learning the opposing object-

reward associations in the two contexts occurred around the

same time.

Subsequently, rats were trained successively for 3 days on

each of two object sets (AB and CD) within a new pair of con-

texts. With one exception, all rats reached the performance

criterion for each set within a single day (trials to criterion

69.6 ± 13.1 for AB and 70.6 ± 3.8 for CD) and in significantly fewer

trials than on the original set (mixed model repeated-measures

ANOVA F2,4 = 26.3, p = 0.003; post hoc paired t tests; XY versus
AB t(4) = 4.8, p = 0.008; AB versus XY t(4) = 6.6, p = 0.002; AB

versus CD t(4) = 0.08, p > 0.05; Figure 1C). These findings indi-

cate that rats acquired a general schema for context-guided

object association by the completion of an initial problem and

could subsequently acquire new object sets rapidly. Notably,

in the recording studies described below, implanted rats (n = 5)

pretrained on the initial XY problem also subsequently learned

AB and CD within a single session and performance remained

high throughout testing on intermixed AB and CD sets (ABCD;

Figure 1D).

Hippocampal Neurons Encode Multiple Dimensions of
Item and Spatial Information
ANOVAs on firing rates of CA1 and CA3 neurons during object

sampling on ABCD sessions identified firing patterns that

differentiated item identities, item valence (rewarded or non-

rewarded), co-occurrence of items within a set (AB or CD),

position of item sampling within each context, and spatial
Neuron 83, 202–215, July 2, 2014 ª2014 Elsevier Inc. 203



Figure 2. Example Responses from Hippo-

campal Cells during Item Sampling

Perievent time histograms (PETHs) centered on the

onset of item sampling of example cells for the four

items presented within each position. y axis is the

trial average firing rate (Hz; scale at top left for each

cell). Gray shading indicates the minimum sampling

period. (A and B) CA3 neurons. (C and D) CA1

neurons. See also Figure S4 for histological confir-

mation of recording sites.
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context. These analyses focused on the activity of 571 isolated

neurons (CA1: 292, CA3: 279) during stimulus sampling epochs

(mean duration = 1.53 ± 0.59 SD s). Based on a four-way

(valence, set, position, and context) ANOVA for each neuron,

the firing rates of 40.7% of the cells were influenced by context

(CA1: 124, CA3: 109), 34.0% by position (CA1: 105, CA3: 90),

28.6% by valence (CA1: 84, CA3: 80), and 19.0% by set (CA1:

65, CA3: 43); and 13.5% of cells fired differentially depending

on the interaction of valence and set, reflecting coding of item

identity (CA1: 36, CA3: 39). These findings indicate that the firing

patterns of individual neurons were modulated by multiple task

dimensions and that equivalent proportions of CA1 and CA3

neurons were significantly influenced by each task dimension
204 Neuron 83, 202–215, July 2, 2014 ª2014 Elsevier Inc.
(Figure S1D available online). Therefore

unless otherwise stated, we combined

CA1 and CA3 cells to compose population

firing rate vectors for each object sampling

event.

Of the neurons whose activity was influ-

enced by at least one variable, the firing

rates of 79.7% neurons (n = 244/306)

were also influenced by a combination of

spatial (i.e., context and/or position) and

object (i.e., set and/or valence) dimen-

sions. For example, Figure 2A shows a

neuron that fired at different rates during

object sampling in the two contexts

(greater activity in context 2) and its firing

rate was also influenced by item valence

(greater activity for nonrewarded items in

position 4). Other neurons distinguished

positions within a context (Figure 2B) with

or without distinguishing rewarded from

unrewarded objects (Figure 2C; position

X valence interaction). Yet other neurons

fired during object sampling at all posi-

tions, though at different rates for different

items (Figure 2D; interaction of valence X

set X position). A summary of the average

firing rates for each item and place com-

bination is shown in Figure 3A. Most cells

fired at the highest rate during object

sampling at one position and had a

preferred item and/or valence within that

position. Very few cells fired at equally

high rates during sampling of all four
items in the preferred position. Thus, the activity of individual

hippocampal neurons reflects a multidimensional association

of the relevant object and spatial dimensions that characterized

this task.

Multidimensional Representational Similarity Analysis
To measure the similarity of ensemble representations of

different item sampling events, we calculated the average z

normalized firing rate for each neuron during all item sampling

epochs and constructed a population vector for every sampling

event based on these normalized rates. Examples of activity

patterns of a simultaneously recorded ensemble taken from

one recording session are shown in Figure 3B. The overall



Figure 3. Ensemble Similarity Analysis Reveals Hierarchical Coding of Related Events

(A) Firing rates for all cells during ABCD, sorted for CA3 and CA1 by condition that elicited maximal firing rate. z axis is the trial averaged z normalized firing rate.

x axis sorts trial types by context, position, valence, and item. Strong item coding is reflected in different firing rates among items within a position.

(B) Simultaneously recorded cell ensembles for seven trials within an example session. Each histogram is the population vector composed of Z scored

(range �1.95 to 7.02 SD) firing rates during one trial identified by context (Con), position (Pos), item (A, B, C, D) and reward valence (+, �).

(C) An example correlation matrix from one session showing correlation coefficients by color code (right scale).

(D) The mean correlation coefficients (±SEM) for within- and between-condition item sampling events for each task dimension (see Table 1). For all dimensions

except set, the correlation coefficients are higher for within-condition trials than between. IVSPC as defined in Table 1. See Figure S2 for individual rat data.

(E) A dendrogram showing that ensembles of the same valence in the same position are most similar, followed by ensembles associated with items of

opposing valence within the same position. Positions within the same context were also coded more similarly than positions in the opposing context. See also

Figures S1–S3.
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Table 1. The Inclusion Filters for the within and between

Conditions Whose Difference Operationally Defines Each Task

Dimension

Task Dimension Within Condition Between Condition
Item within a position IVSPC IVSPC
Valence within a position IVSPC IVSPC
Set within a position IVSPC IVSPC
Item across positions IVSPC IVSPC
Valence across positions IVSPC IVSPC
Set across positions IVSPC IVSPC
Position IVSPC IVSPC
Context IVSPC IVSPC

Within-condition comparisons were those in which the ensemble activity

from two sampling events were matched in the dimension of interest

(e.g., from the same position). Between-condition comparisons were

ideally identical to within-condition comparisons except for choosing

two activity patterns recorded in conditions that differed only in the dimen-

sionof interest (e.g., fromdifferent positions). IVSPC isanacronymforeach

task dimension: I, item; V, valence; S, set; P, position; C, context. Black

lettering indicates that recordings were from events of the same condition

for that dimension (e.g., all black text indicates repetition of the same item

in the same positions). Red lettering indicates that recordings were taken

from events between conditions for that dimension (e.g., a red ‘‘P’’ indi-

cates that ensembleswere recordedduring samplingevents that occurred

in different positions). Gray lettering indicates that recordings were taken

from events both within and between conditions for that dimension.
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ensemble pattern was similar for repetitions of sampling events

with the same item in the same position (top two events).

Ensemble patterns for events with different items of the same

valence were partially overlapping; several new cells joined

the ensemble, while others dropped out (top versus third

events). Ensemble patterns for events with different valence in

the same position showed more divergent firing patterns

(top versus fourth event), and the overlap in the ensemble

pattern decreased further still for events in different positions

and in different contexts (top versus fifth and sixth events,

respectively).

We created similarity matrices to visualize the patterns of

ensemble similarity across all types of item-sampling events

for each recording session. Figure 3C shows an example sim-

ilarity matrix from one session in which item sampling events

have been sorted by four task dimensions: item, valence, posi-

tion, and context; set is not included because, as will be pre-

sented below, this dimension is not encoded by hippocampal

ensembles. The similarity matrix shows that correlations be-

tween hippocampal population vectors for different sampling

events reflect the identified task dimensions. For example, in

this similarity matrix, in the top left corner ensemble patterns

of items A+ and C+ are strongly correlated, showing represen-

tational similarity of items that have the same valence in the

same position. Along the left column, ensemble patterns

for A+ and C+ are strongly correlated between positions 1

and 2, showing similarity in representations of these items

across positions in the same context. By contrast, looking

further down the left column, ensemble patterns for A+ and

C+ in position 1 are inversely correlated with those of the items

in positions 3 and 4, showing anticorrelations in the alternate

context.
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To quantitatively compare the similarity of ensemble repre-

sentations associated with these dimensions, we computed

population correlation coefficients by combining the similarity

matrices taken from each ABCD session of all subjects. We

calculated mean population correlation coefficients for item,

valence, and set dimensions within a position as well as across

positionswithin a context, and for the combination of all compar-

isons across contexts (see Table 1 middle column for inclusion

criteria). These analyses revealedmodest but reliable correlation

coefficients between population firing rate vectors between

individual pairs of brief object sampling events (Figure 3D). For

example, correlations between population firing rates during

events with the same item in the same position had an average

correlation coefficient of r = 0.25, but the SE of the mean across

rats (N = 5) was only ±0.02, indicating that the variability of pop-

ulation firing patterns is highly consistent between identical indi-

vidual events (Figure S2). Next, using the pooled correlations

from every session (three per rat), we calculated a d’ metric to

measure the separation of the distributions of the correlation

coefficients from specific conditions (e.g., pairs of identical

sampling events) versus zero or versus the distribution of coeffi-

cients from an appropriate opposing condition (pairs of sampling

events for the same item in different positions within the same

context; see Table 1). The d’ metric was compared against a

bootstrapped data set to estimate the probability of the ob-

served score against a random distribution. Despite the modest

correlations, the observed correlation coefficients for each

dimension were significantly different from zero (see Experi-

mental Procedures, p < 0.0001). We also performed this analysis

on the data pooled over three sessions for each rat, and the

pattern of findings on each subject are similar to those for the

combined data described below (Figures S2D and S2E). Para-

metric comparison of the mean correlation coefficients using

each rat as the unit of analysis also revealed the same overall

pattern (Figure S2D).

To measure the extent to which ensembles encoded each

dimension, we compared the correlation coefficients within

and between conditions of that dimension (for specific compar-

isons, see Table 1, middle versus right columns). Coding of item

identity was measured by comparing ensemble correlation

coefficients between population firing patterns during item sam-

pling events with the same item in the same position to those

with different items of the same valence at the same position

(Figure 3D; Figure S2). Correlation coefficients for identical

events (mean r = 0.25) were greater than those for events with

different items of the same valence (mean r = 0.18; d’ = 0.23,

p < 0.0001), providing strong evidence that hippocampal ensem-

bles differentiate items at specific locations. To measure coding

of reward valence, we compared ensemble correlation coeffi-

cients among events that involved different items of the same

valence to those that involved different items of different va-

lences at the same position. The similarities of ensemble pat-

terns for events involving different items with the same valence

were greater than for events with different items of different

valence (mean r = 0.08; d’ = 0.34, p < 0.0001), indicating strong

evidence that hippocampal ensembles differentiate items by

valence at each location. To measure coding of sets (AB and

CD), we compared ensemble correlation coefficients among
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events that involved different items from the same set versus

different items across sets at the same position. The similarities

of ensemble patterns for events involving the item from the

same and different sets were equivalent (within set mean r =

0.08; between set mean r = 0.08), indicating that hippocampal

ensembles do not represent co-occurrence of items within

sets (d’ = �0.02, p = 0.20) any greater than their differentiation

of item identity and reward valence.

To measure ensemble coding of positions within a context,

we compared the ensemble correlation coefficients of sampling

events that occurred within the same position to the correlation

coefficients of ensembles that occurred in different positions

within the same context (Table 1; Figure 3D; Figure S2).

Ensemble patterns for events occurring within the same posi-

tion were more similar (within position mean r = 0.15) than

those across positions (mean r = 0.02; d’ = 0.45, p < 0.0001),

reflecting the well-known place code. However, the pattern of

similarity across positions highly depended upon the items

sampled in those positions. Pairwise comparisons of popula-

tion correlation coefficients for sampling events with the same

item in the two positions within a context showed the highest

similarity (mean r = 0.09), as suggested by the observation

that some cells fire in response to the same item presented

in multiple locations (see Figure 2D; Wood et al., 1999). Activity

recorded during events in which rats sampled the same item in

different positions were more correlated than events in which

rats sampled different items of the same valence (mean r =

0.03; d’ = 0.22, p < 0.0001), which in turn were more correlated

than sampling events that differed both by item identity and by

the valence of those items (mean r = �0.03; d’ = 0.25, p <

0.0001). Activity associated with items from the same set

across positions were not more correlated than items from

different sets across positions (d’ = �0.02, p = 0.15), again

showing the lack of differentiation of items between sets.

Combining these observations, item identity and valence

were coded both within a position and across positions, results

that strongly argue against a model in which nonspatial infor-

mation is coded only by the firing rate within single spatial firing

fields (Leutgeb et al., 2005).

Finally, hippocampal patterns were anticorrelated between

the two contexts (between context mean r = �0.09, probability

of the observed correlations less than zero < 0.0001; Figure 3D),

and the ensemble correlations for events that occurred in

different contexts were significantly lower than the correlation

of ensembles recorded in different positions within the same

context (Table 1; d’ = 0.39, p < 0.0001), indicating that contexts

that define opposite item valence are associated with distinct

patterns of neural activity.

This combination of results indicates a hierarchy of

ensemble similarity during item sampling events. To illustrate

this hierarchy, we constructed a dendrogram in which each

item and position combination (n = 16) was associated with

a population firing rate vector from neurons (n = 560) across

all sessions and all rats. These population vectors were corre-

lated and vectors that produced the largest correlations were

grouped into clusters (see Experimental Procedures). This

analysis shows that the highest average similarity of ensemble

patterns for item sampling events of the same valence in the
same position, followed by events of opposite valence in the

same position, followed by events in the other position within

the same context, and finally, the anticorrelation for events

that occurred in the alternate context where items had oppo-

site reward contingencies (Figure 3E). There are a larger num-

ber of possible dendrograms (C15 = 9,694,845) and therefore

the likelihood of observing this particular binary tree by chance

is low.

We confirmed these results by estimating the probability that

a pattern of ensemble firing rates was recorded in each of the

16 item in position combinations using a Bayesian decoding

algorithm. The decoding algorithm generated the same hierar-

chy of ensemble similarity as the correlational techniques

described above (Figure S3). Ensembles were most likely to

have been recorded from the correct item and position com-

bination (mean probability = 0.38), which was greater than the

probability of the unit activity originating from trials with a

different item of the same valence in the same position (mean

probability = 0.18; d’ = 0.58, p < 0.0001). This significant differ-

ence in probability reflects the strong item coding. The next

most likely origin of the recorded ensemble was from sampling

events occurring in the same position though containing an

item of opposing valence (mean probability = 0.05, d’ = 0.48,

p < 0.0001). This significant difference in probability reflects

the valence code. Ensembles were equally likely to originate

from sampling events of the same set (mean probability =

0.05) as from samples of the other set (mean probability =

0.04), confirming the lack of a distinct code for item pairing

(d’ = 0.08, p = 0.15). The position code was reflected by the

higher probability that ensemble activity was recorded in the

correct position (mean probability = 0.20) than the probability

of being recorded in the incorrect position within the correct

context (mean probability = 0.06; d’ = 1.24, p < 0.0001). Finally,

ensembles were least likely to have been recorded in the

opposing context (mean probability = 0.02), with a mean proba-

bility of decoding to the wrong context lower than decoding to

the wrong position within the same context (d’ = 0.38, p <

0.0001) and lower than decoding to the opposing context by

chance (p = 0.0013).

Based on these results, we conclude that item identities, their

reward valences, and the locations where items appear within a

context are encoded by hippocampal ensembles during item

sampling. Notably, the co-occurrence of items within a set is

not encoded by hippocampal ensembles in the current task.

Finally, hippocampal ensembles strongly separate representa-

tions of events in different contexts, suggesting opposing sche-

mas are created for events in contexts that are meaningfully

distinct.

Both CA1 and CA3 Encode Item and Spatial Dimensions
Different functions have been ascribed to areas CA1 and CA3

(Farovik et al., 2010; Hoge and Kesner, 2007; Lee et al., 2004;

Leutgeb et al., 2004; Hasselmo and Wyble, 1997; Alvernhe

et al., 2008; Dupret et al., 2010; Rolls, 2013), and therefore we

tested whether these two hippocampal regions differentially

coded each of the task dimensions. Population firing rate vectors

were computed separately for simultaneously recorded CA1 and

CA3 ensembles (Figure S4) and the correlational analyses
Neuron 83, 202–215, July 2, 2014 ª2014 Elsevier Inc. 207
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described in the previous section were repeated for these re-

gion-specific ensembles (Figures S1A–S1C).

In both regions, when analyses were limited to item sampling

events that occurred within the same position, events in which

the item identity were matched were better correlated (CA1:

r = 0.23, CA3: r = 0.34) than events in which different items

of the same reward valence were presented (CA1: r = 0.15,

d’ = 0.23; CA3: r = 0.29, d’ = 0.11; p < 0.0001 for both regions).

Changing both item identity and reward valence caused further

decreases in ensemble correlation coefficients in both regions

(CA1: r = 0.09, d’ = 0.19; CA3: r = 0.21, d’ = 0.19; p < 0.0001

for both regions). Therefore, firing rates of cells in areas CA1

and CA3 are influenced by item identity and reward valence of

items that occupy a single position.

Comparisons of firing rates recorded within the same posi-

tions revealed that area CA3 but not CA1 showed higher popu-

lation correlation coefficients for events containing items of the

same set (CA1: r = 0.09, CA3: r = 0.22) than for items of separate

sets (CA1: r = 0.08, d’ = 0.03, p = 0.24; CA3: r = 0.20, d’ = 0.04,

p = 0.002). This difference between regions was observed when

comparing two distributions of correlation coefficients (same set

versus different set) composed of observations pooled across

rats. Significance testing for each rat revealed set coding in

only a single subject (d’ = 0.10, p < 0.001), suggesting that any

item set code in area CA3 is secondary to the representation

of other task dimensions.

Both regions showed higher correlation coefficients for sam-

pling events that occurred within the same position (CA1: r =

0.14, CA3: r = 0.27) than for samples that occurred across posi-

tions within the same context (CA1: r = 0.01, d’ = 0.35; CA3: r =

0.12, d’ = 0.36; p < 0.0001 for both regions). The correlation of

activity patterns recorded within a context were higher in both

regions than correlations for samples that occurred in the

opposing contexts (CA1: r = �0.06, d’ = 0.23; CA3: r = �0.03,

d’ = 0.34; p < 0.0001 for both regions), which were significantly

anticorrelated in both regions (p < 0.0001 for both regions).

Thus, the full schema that was identified when ensembles

were pooled between the two hippocampal fields existed in

both CA1 and CA3.

To determine whether a particular task dimension (e.g., posi-

tion) had a stronger influence on population firing patterns in

CA1 versus CA3, the degree of dimensional coding was esti-

mated with a d’ metric described above. The difference between

the d’ metrics calculated for each region was compared against

a randomized data set in which the identity of each neuron

(CA1 or CA3) was shuffled 10,000 times. Position, context, set,

and valence were coded similarly by these regions (the probabil-

ity that the observed difference between d’ metrics was larger

than shuffled data was greater than 0.2 for each dimension)

(Figure S1C). In contrast, CA1 showed greater item coding for

sampling events that occurred within a position (CA1 d’ =

0.23; CA3 d’ = 0.11; p = 0.003) and also showed greater item

coding when activity patterns were compared across positions

within the same context (CA1 d’ = 0.25; CA3 d’ = 0.08; p <

0.0001). Therefore, while item information influenced firing rates

in both regions, CA1 ensembles distinguished items within a

fixed position as well as across positions more so than CA3

ensembles.
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Nonspatial and Spatial Dimensions Are Distinctly
Expressed during Item Sampling
We next explored whether different dimensions of an event are

encoded as a unified representation, or whether each dimension

is encoded distinctly, consistent with an associative network of

the component elements of memories. We reasoned that, if an

item’s identity, valence, and position are integrated within a

unified representation, they should all be expressed simulta-

neously. On the other hand, if these dimensions are distinctly

encoded, then their representations might be expected to

appear sequentially during the item-sampling period. To address

this question, firing rates for each item-sampling event were

calculated for 250 ms bins centered around the onset of item

sampling and ensembles recorded on different samples were

correlated at each time bin.

These analyses indicated that information about item identity,

valence, and position are expressed sequentially rather than

simultaneously. Position information was expressed first. For

all types of item sampling events that occurred within the same

position, at the outset of sampling there was an initial increase

in themean ensemble correlation regardless of whether the sam-

pling events contained the same item (Figure 4A, black), different

items of the same valence (Figure 4A, red) or different items of

opposing valence (Figure 4A, green), indicating a reliable posi-

tion code at the onset of sampling. In contrast, ensemble corre-

lations between positions were, on average, low throughout item

sampling (Figure 4A, gray). The difference between the within

position versus between position correlations was assessed

using the d’ metric that reflects the degree of position coding

(Figure 4B, gray). Position d’ was significant for approximately

1,000 ms before item sampling and peaked 250 ms after item

sampling before significantly decreasing (max d’ � min d’ =

0.19, probability observed d’ range in bootstrap data < 0.001)

(Figure 4B, gray).

The decrease in position coding was caused by the onset of

item and valence coding that increased the variability of firing

within a position. For sampling events with the same item in

the same position, the average ensemble correlation increased

upon arrival to the items and remained high throughout item

sampling (Figure 4A, black), indicating reliable coding

throughout the sampling epoch. Sampling events with different

items of the same valence (Figure 4A, red) showed the same

initial increase in ensemble correlation, which subsequently

decreased throughout item sampling, reflecting the divergence

of neural firing patterns in response to different stimuli—the

item code. The d’ metric for item coding (Figure 4B, black) was

statistically significant from the onset of sampling until the

reward was retrieved and peaked 1,000 ms after item sampling.

Therefore, item information increased at the same time points

when position coding decreased.

Valence information influenced hippocampal neuronal firing

rates last during item sampling. When comparing samples with

different items and different reward valence (Figure 4A, green),

neural activity was initially well correlated, reflecting the position

code. However, 750 ms after item sampling, ensembles re-

corded during events with different items of the same valence

were significantly more correlated than ensembles recorded

during samples of items with different valence, as shown by



Figure 4. Task Dimensions Are Expressed at Different Times during

Item Sampling

During item sampling, position is coded first, followed by item, and finally

valence.

(A) The ensemble correlation analyses was done using the population firing

rates taken from 250 ms bins centered around sampling for trials in the same

location. Sampling epochs shorter that 1.5 s were excluded. IVSPC defined

in Table 1. Mean of each rat’s average correlation coefficient is plotted with

SEM (N = 5).

(B) The average d’ for item (black) and valence (red) and position (gray) for trials

in the same position. Color coded bar above graph shows periods in which

that dimension was significantly coded.
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the increase in the valence d’ metric at these times (Figure 4B,

red). Notably, valence coding peaks at the end of the item sam-

pling period, suggesting this activity may reflect preparation of

the differential behavioral response associated with items of

opposite valence.

The distinct representation of position, valence, and item

coding suggests that these task dimensions are encoded as

distinct elements rather than unified conjunctions.

New Associations Are Rapidly Assimilated within the
Existing Hippocampal Network
A defining property of schemas is that new memories are

stored within the structure of related existing memories (Piaget,
1928; McKenzie and Eichenbaum, 2011; McClelland et al.,

1995; McClelland, 2013). Therefore, we tested the hypothesis

that neural activity recorded during training of the second

item set (CD) would be similar to activity already established

during training on the first item set (AB) learned within the

same context. We expected a stable position and context

code, because adding new items within the same spatial orga-

nizations did not alter the meanings of these task dimensions.

Also, based on the view that schemas link closely related

events, we also expected similarity in the ensemble representa-

tions of items that similarly predict reward or nonreward within

a context.

To determine whether firing patterns reflected the similarity of

the two item sets, we first identified the item and position

conjunction that generated the highest firing rate during the

last day of training on the first item set (AB3; see Figures 1A

and 1D). We then used this preferred item and position for

each neuron to compare firing rates during sampling of items

of the same and different valence during the first day of training

on the second item set (CD1). This required comparing the activ-

ity patterns of the same neurons between two successive daily

sessions, and so this analysis focused on 38 neurons that were

carefully selected as having identical characteristics across

days (see Experimental Procedures). As predicted, we observed

that in 52.6% of the cells (n = 20/38), the median firing rate

recorded during the second item set was higher for the same-

valence item in the preferred position than in any of the other

seven item and place combinations (c2 = 52.4, p = 4.65�13).

For example, cell 1 in Figure 5A fired for unrewarded item B�
in both positions in context 1 and fired equivalently for unre-

warded item D� in both positions in context 1 (main effect

valence F(1,213) = 16.96, p = 0.0001, item B versus item D

in positions 1 and 2, Ps > 0.05). Similarly, cell 2 showed

equivalent firing for unrewarded items A� and C� in only one

of the positions in context 2 (main effect valence F(1,213) =

171,1. p < 10�28; item A versus item C in position 3, t(8) = 0.33,

p = 0.75).

To examine when common firing across item sets emerged,

we compared firing rates on the first and last encounter with

each new item (items C and D) for which animals made the

appropriate behavioral response. On both the first and last sam-

pling event, firing rates were higher in the preferred positions

(mixed-model repeated-measured ANOVA, main effect position

F1,37 = 10.68, p = 0.002, post hoc t tests at each time point, Ps <

0.05), revealing a stable position code across item sets. Even on

the first correct encounter with each item in the preferred posi-

tion (absolute sample number 1–48, mean sample number =

11.25 ± 11.86 SD), there was a trend that cells fired more for

the same-valence item (mean Z score rate = 1.24 ± 0.35) than

the different-valence item (mean Z score rate = 0.38 ± 0.28;

paired t test, t(37) = 1.99, p = 0.053) (Figure 5B, first sample),

though an equal number of cells fired maximally to the same

(n = 20/38) and different valence items (c2 = 0.02, p = 0.87). By

the end of training, cells clearly showed a firing rate preference

for the equivalent item. On the last sampling events for each

item in the preferred position, cells fired at a significantly higher

rate for same-valence items (mean Z score rate = 1.17 ± 0.31) as

compared to items of opposing valence (mean Z score rate
Neuron 83, 202–215, July 2, 2014 ª2014 Elsevier Inc. 209



Figure 5. New Items Are Encoded within an Established Schema

(A) The Z score firing rate for two cells recorded on the last day of training on the first item set (AB3) and the first day of training on the second item set (CD1)

24 hr later.

(B) The mean Z score firing rate recorded on the first and last encounter with each item, as identified on AB3 training. Error bars represent SEM.

(C) Data from AB3 and CD1 were merged and the median ensemble rates for each item and place conjunction were calculated and population vectors were

correlated from AB3 to CD1 to create the 8 3 8 similarity matrix.

(D) The valence, position and context coding that developed over AB training was preserved and extended to training with the new item set. IVSPC defined in

Table 1. #p = 0.053, *p < 0.05, **p < 0.01, ***p < 0.0001. See also Figure S5.
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0.11 ± 0.13, t(37) = 3.52, p = 0.001) (Figure 5B, last sample) and

far more cells (n = 33/38) fired maximally to the equivalent item

(c2 = 19.2, p < 0.00001).

We then tested for differences in firing to the same- and

different-valence items in the nonpreferred location within the

preferred context. On the first sample with each item, there

were no differences in firing rates (t(35) = 1.47, p = 0.15), though

by the final sample there was greater firing to same-valence

items (t(35) = 2.81, p = 0.008) (Figure 5B, nonpreferred position).

These results show that during learning, cells developed a

preference for the item of the same valence in both the preferred

and nonpreferred positions.

We next asked whether the overall neural representation

developed during training of the first item set was reinvoked

during training of the second item set. We adopted a similar cor-

relation analysis as that previously described for analyzing days

when all items were intermixed, though instead of comparing
210 Neuron 83, 202–215, July 2, 2014 ª2014 Elsevier Inc.
simultaneously recorded ensembles on individual samples, we

calculated the median firing rate for each item and place com-

bination (four items in four positions) for each cell (n = 38) and

concatenated these rates across rats for subsequent analysis.

The ensemble similarity in response to different item and position

combinations was established by examining the correlations

of cell activity recorded at every item and position combination

for the first item set (two items in four positions) with firing

rates recorded during initial training of the second item set

(two new items in the same four positions) recorded 24 hr later.

The resulting 8 3 8 similarity matrix describes which item and

position combinations result in overlapping hippocampal en-

sembles (high correlations) and therefore operationally defines

the neural network organization of the task dimensions (Fig-

ure 5C). As suggested by the findings on single-cell activity

patterns, when analyses were limited to sampling events

occurring in the same position, samples with different items of
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the same valence were more correlated (mean r = 0.60) than

samples with different items of opposing valence (mean r =

0.38; d’ = 1.79, p = 0.001), suggesting a subset of cells that fired

during the first item set fired similarly for the equivalent item of

the second item set.

We also found evidence for a stable position and context

code. Population activity patterns recorded during item sam-

pling in the same position across days were more correlated

(mean r = 0.49) than those recorded in different positions

(mean r = 0.02; d’ = 3.06, p < 0.0001), which were in turn more

correlated than those recorded within the other context (mean

r = �0.24; d’ = 1.84, p < 0.0001) (Figure 5D). Together, these

data show that neural correlates of the entire task structure

that developed during training on the first item set were adopted

and extended to encode related items that occurred within the

same context.

The combined findings in these analyses suggest that neural

activity during learning of new item associations reflected bind-

ing of information acquired over multiple days into a unified

schema that represents equivalent item and position associa-

tions within overlapping hippocampal networks. The item and

place conjunctions that generated correlated neural activity at

the end of learning both item sets were qualitatively the same

as those observed during overtraining days in which all items

were presented, suggesting that the schema that developed

during learning was maintained until the final day of behavioral

testing.

DISCUSSION

The present findings show that hippocampal neuronal networks

represent a hierarchical organization that links overlapping

elements of related memories. For both spatial and nonspatial

elements of separate experiences, related features were inte-

grated within an organized representation, whereas events

that dictated divergent behavior and reward expectations were

separated into distinct hippocampal representations. These

findings show that memory representations in the hippocampus

are not characterized by unified configurations of places identi-

fied by specific landmarks, but rather that the hippocampus

creates a schematic representation of the behaviorally relevant

relationships between distinct elements of memories, including

perceptually defined objects, their meaning, and the places

they occur, and strongly separate schemas are created for

events that occur in meaningfully different contexts.

These results add to a confluence of evidence indicating that

the hippocampus encodes both nonspatial and spatial features

of an experience. Several studies have reported that hippocam-

pal neurons respond to specific nonspatial stimuli only within the

place field for each cell (Komorowski et al., 2009; Moita et al.,

2003), while others have reported responses to common stimuli

across multiple locations (Wood et al., 1999; Manns and Eichen-

baum, 2009; McKenzie et al., 2013; Singer et al., 2010; Eichen-

baum et al., 1987). We observed both types of responses as

shown by item and valence coding within and across positions.

Some have hypothesized that spatial contexts are represented

by qualitatively distinct mappings of place cells, whereas events

are encoded by quantitative differences in firing rate (Leutgeb
et al., 2005). The present findings indicate a more complex, yet

highly organized population representation in the hippocampus

that interleaves distinct and related events within and across

positions and contexts.

We observed that most CA1 and CA3 neurons exhibited high-

dimensional coding, including conjunctive responses to both

object and spatial dimensions (Komorowski et al., 2009; Manns

and Eichenbaum, 2009; Anderson and Jeffery, 2003; Wiebe and

Stäubli 1999; Deshmukh and Knierim, 2013), consistent with the

convergence of the ‘‘what’’ and ‘‘where’’ pathways within the

hippocampus (Witter et al., 2000). The importance of associating

events and the places and context in which they occur is prom-

inent in studies of hippocampal memory function in animals

(Balderas et al., 2008; Komorowski et al., 2013; Tse et al.,

2007; Parkinson et al., 1988) and humans (Holdstock et al.,

2002; Vargha-Khadem et al., 1997). Together, these results

and others (Davachi et al., 2003; Diana et al., 2010) support

the hypothesis that the hippocampal contribution to memory

involves binding of items within a contextual framework (Eichen-

baum et al., 2007; Diana et al., 2007).

Many have argued that the binding of items in contexts in-

creases the uniqueness of memory traces, allowing the storage

and recollection of distinct episodic memories (Gilbert et al.,

1998; Yassa and Stark, 2011; Norman 2010; Norman and

O’Reilly 2003; Xu and Südhof, 2013; Hasselmo and Wyble,

1997). The observation that place cells generate independent

spatial mappings in different contexts (Paz-Villagrán et al.,

2004; Spiers et al., 2013; Leutgeb et al., 2004; Kubie and Ranck

1983; Hayman et al., 2003) has suggested that the hippocampus

creates qualitatively distinct representations of overlapping

memories in order to reduce interference (Kumaran et al.,

2012). Challenging this view, here we found strong evidence

that similar events are represented within a hierarchical organi-

zation of correlated hippocampal firing patterns.

Other recording studies have suggested elements of a com-

mon hippocampal code for related events. When animals

perform the same behavioral response to retrieve a reward at

different positions, subsets of hippocampal neurons fire similarly

at multiple locations around a circular track (McKenzie et al.,

2013). Similarly, when animals traverse parallel arms of a W-

shaped maze to retrieve reward, cells fire at equivalent positions

on each arm, suggesting a common code for functionally equiv-

alent events at different locations (Singer et al., 2010). In humans,

monkeys, and rats, hippocampal neurons respond to categories

of items that are functionally equivalent (Kreiman et al., 2000;

Quiroga et al., 2005; Deadwyler et al., 1996). These parallel lines

of evidence indicate that the hippocampus records common

features of events within overlapping networks that link related

memories (Eichenbaum, 2004). Furthermore, whereas other

studies have reported differences in continuous versus categor-

ical coding in CA1 and CA3 (Leutgeb et al., 2004; but see Colgin

et al., 2010), respectively, here neuronal networks across these

areas act cooperatively in a common, continuous, and hierarchi-

cal organization of memory representations.

Importantly, the hippocampus did not similarly encode sets

of items that co-occurred within trials throughout training. This

finding is striking for several reasons. First, it is notable that

rats move rapidly between objects within trials, such that
Neuron 83, 202–215, July 2, 2014 ª2014 Elsevier Inc. 211
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pairs of sampling events with items of the same set were on

average presented much closer in time than items between

sets. The absence of strong correlations despite these shorter

intersample intervals indicates that high correlations between

items of the same valence from different sets were not due

to baseline temporal correlations in hippocampal cell firing.

Second, these results are an important control showing that

the hippocampus does not code all possible regularities but

only those that are meaningful, in this case, stimuli that have in

common that they predict reward or nonreward. Third, several

models strongly predict that events that occur closely in time

will be represented by correlated patterns of activity due to the

recall of the common temporal context (Howard and Kahana,

2002). The current results do not necessarily indicate that the

hippocampus does not encode temporal context but do suggest

that in the present paradigm, common temporal context is

secondary to other meaningful regularities including spatial

context, position, reward, and the perceptual properties of the

sampled item. These findings indicate that hippocampal net-

works do not necessarily capture a unified and qualitatively

distinct ‘‘snapshot’’ of each episode but rather the absence of

a hippocampal code for co-occurrence reflects the integration

of multiple related, albeit separate, experiences into a schematic

organization.

We found that events that occurred in different contexts were

represented by anticorrelated hippocampal population firing

patterns. This finding is in contrast to the independent place

code that is often reported for unrelated contexts and also

distinct from observation of anticorrelated activity for different

behaviors executed within the same space (Bahar et al., 2011;

Markus et al., 1995). In our experiment, rats executed the

same behaviors in both contexts, though in response to different

items. Therefore, the anticorrelated representations reflect either

the context-dependent item associations or the behavior and

item associations but cannot simply reflect behavior or arousal

alone (O’Keefe 1999). The additional finding of anticorrelated

representations of events of opposite significance across loca-

tions within a context suggests that strong separation of repre-

sentations may be driven by opposing significance of events

within or between contexts.

Previous studies have established that place cells maintain a

somewhat stable place code across days (Ziv et al., 2013;

Thompson and Best, 1990; Mankin et al., 2012). We extend

these findings and show that cells also maintain a stable valence

code across days and across different items when training pro-

duces consistent behaviors across days. After characterizing the

items that cells prefer, 79% of those cells went on to fire more

in response to other items of equivalent valence. These results

suggest that, at the time of learning, new information is rapidly

assimilated within networks of related memory traces (Eichen-

baum, 2004; McKenzie and Eichenbaum, 2011). Similarities in

hippocampal coding between familiar and novel conditions

probably reflects the integration of related memories, arguably

a primary purpose of memory systems in schema development

and memory consolidation (McClelland et al., 1995; Tse et al.,

2007). This overlapping code at the time of learning builds rela-

tional representations that could support transitive associations

between separately learned experiences via of their common
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associations with a behaviorally relevant context (Dusek and

Eichenbaum, 1997; Bunsey and Eichenbaum, 1996; Zeithamova

and Preston, 2010; Zeithamova et al., 2012).

EXPERIMENTAL PROCEDURES

Subjects and Behavioral Task

Subjects were ten male Long-Evans rats kept on food restriction and held at a

minimum of 85% free-feeding weight. All animal procedures were approved

by the Boston University Institutional Animal Care and Use Committee.

The contexts were two chambers separated by a central alleyway that

differed in terms of color and texture of the floors and wall. The objects

(referred to as ‘‘items’’) were terra cotta pots filled with different digging media

(e.g., shredded paper) and scented with different essential oils (e.g., maple)

and reward was a small bit of cereal buried in one of the pots. On each trial,

two objects were located in either left-right spatial configuration within a

context randomized across trials. After learning the initial XY problem, five

rats were implanted with hyperdrives in dorsal CA1 and CA3 then, after surgi-

cal recovery and identification of neuronal activity, were trained successively

on AB and CD for 3 days each, then for 3 days on both sets concurrently in

randomly presented AB andCD trials (ABCD). Another set of five nonimplanted

rats were used to measure learning rates on each problem.

Single-Neuron Analyses

For every item sampling event, cell firing rate was determined as the number of

action potentials observed during at most 2 s of sampling. A four-way ANOVA

was calculated for each cell’s firing rate with main effects of: context, position

nested within context, valence, and item set. All interactions were also calcu-

lated and item coding was assessed through the interaction of valence and set

(see Figure S1D for proportion of significant cells in CA1 and CA3).

Multidimensional Representational Similarity Analyses

Firing rates for individual neurons were Z score normalized using themean and

SD among all item sampling events to create a population vector of normalized

rates for each event. The Pearson’s correlation coefficient of these population

vectors was calculated for every pair of events. Strength of a coding dimension

was calculated by comparing themean correlation for events within versus be-

tween conditions for that dimension (Table 1). The dimension d’ was generated

either for individual rats or for the experiment as a whole by pooling the corre-

lations among rats. The observed d’ was compared to bootstrap data set in

which event identities were shuffled 10,000 times and then the correlation

analysis and d’ metrics were recomputed for each bootstrap sample (Fig-

ure S2). When data were compared against zero, the d’ metric was the

mean correlation coefficient divided by the SD.

The hierarchical nature of the schema was visualized using the MATLAB

R2012b functions linkage and dendrogram. For each item and position com-

bination, a large firing rate vector was created composed of the median firing

rates of every cell (N = 560) recorded from a session in which correct behavior

was observed for all 16 item and place conjunctions (one session failed tomeet

this criteria) (see Figure 3E). The agglomerative hierarchical cluster tree was

then created using the unweighted average distance between pairs of vectors

and the Pearson’s correlation coefficient as the distance metric.

Temporal Dynamics of Population Firing Patterns

To assess when different dimensions emerged during item sampling, we ran a

similar analysis though firing rates were taken at different 250 ms time bins

centered ± 3 s around item sampling (Figure 4). Only events for which the

rat’s head remained over the pot for over 1.5 s were included. Significance

testing was done using the same bootstrap analysis at each time point and

comparing whether the observed d’ was significant at p < 0.002 (Bonferroni

correction for 24 time points).

Comparison of Representations across Learning

AB and CD Problems

The last day of AB training (AB3) was merged with the first day of CD training

(CD1), to investigate how firing during sampling of A and B generalized upon
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first introduction of C and D (see Supplemental Experimental Procedures for

analyses to ensure recording stability and Figure S5). To assess the similarity

of neuronal activity for one item set (e.g., AB) versus that for the other item set

(e.g., CD), we associated each item and position combination (n = 16) with a

firing rate vector composed of the rates of every cell (N = 38). The pairwise

correlation of these vectors across days generated an 8 3 8 similarity matrix,

which reflects the overlap in neural activity for each item and place com-

bination. These correlations were grouped and averaged to compare task

dimension coding as described above. Statistical testing was done by shuf-

fling the item/position identity of each median rate vector and recalculating

the correlations on the randomized data set.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and five figures and can be found with this article online at http://dx.doi.org/

10.1016/j.neuron.2014.05.019.
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Figure S1 related to Figure 3. Comparison of CA1 (N = 292) and CA3 (N = 279).  For CA3 (A) and CA1 
(B) the average correlations for within- and between-condition trials are shown for each task dimension 
(see Table 1). IVSPC is an acronym for each task dimension: Item (I), Valence (V), Set (S), Position (P),  
Context (C).  Black lettering indicates that trials were correlated within the same condition for that 
context (e.g. correlation of trials within Position 1).  Red lettering indicates that correlations were taken 
from trials between conditions (e.g. correlation of ensembles from trials in Position 1 with those in 
Position 2).  Grey lettering indicates correlation both within and between conditions for that dimension.   
For all dimensions except set in CA1, the correlations are higher for within condition trials than between. 
The error bars are SEM for the 9 CA1 and 11 CA3 sessions.  (C) The d’ metric for each task dimension 
for CA3 (red) and CA1 (black). Item coding within a position was greater in CA1 than in CA3. Error bars 
show the confidence intervals from the bootstrap analysis in which region labels were shuffled (D) The 
proportion of cells whose firing rates were significantly (p < 0.05) modulated by each main effect 
(Context, Position, Valence, Set) and the interaction between factors in the 4-way ANOVA.  The 
interaction between valence and item set (Val/Set) reflects item coding.  White dots within each bar mark 
the 95% confidence interval for each proportion (~6-7%) as calculated from a data set in which trial 
identities were shuffled 1000 times.  Equal proportions were observed in CA1 and CA3. * = p < 0.05, *** 
= p < 0.0001.  
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Figure S2 related to Figure 3. (A) The cumulative distribution function of ensemble correlations recorded 
during trials with varying degrees of overlap in the identity and position of the sampled item.   IVSPC as 
defined in Figure S1. Distributions were compared with a d' metric. (B) The item and position labels for 
each trial were randomly shuffled 10000 times and the d' metric specifying the degree of dimensional 
coding for each of shuffled data set.  The observed d' was then compared to the distribution calculated 
from the bootstrapped data. (C) The d' values for each dimension calculated from data pooled across 
sessions. The dots centered around zero indicate the 95% confidence intervals for each dimension 
calculated from the bootstrap analysis with data pooled from all sessions.  Note that the observed d' 
metrics for set coding within a position (Set/Pos) and across positions (Set/xPos) fail to exceed chance 
values, though each other d' metric falls far beyond the values calculated from the bootstrap analysis.  (D) 
The average correlation coefficients as shown in Figure 3D with individual rat correlations plotted for 
each task dimension.  Significance testing was additionally conducted using paired t-tests (N = 5) on the 
Fisher transform of each correlation coefficient.  The significance of each dimension was the same 
irrespective of whether hypothesis testing was done using the bootstrap method or the parametric 
comparison of the means. Additionally, one way t-tests showed that each condition was significantly (p < 
0.05) different from zero except the correlation of ensembles recorded on samples in different positions 
with different items of the same valence (p = 0.053).  (E) The mean of the each rat's d' metric.  Numbers 
above each bar indicate the percentage of rats (N =5) for which within session bootstrap significance 
testing yielded significant (p < 0.05) coding of that task dimension.  The one rat with significant set 
coding (Set/Pos) showed higher correlations for items of the opposite set.  * p < .05, ** p < 0.01.   
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Figure S3 related to Figure 3. (A) The principal component representation of every trial from one session 
(ABCD2) for one rat projected onto the first two PC axes.  Context 1 = red, Context 2 = blue.  Pos1 = ◊ , 
Pos2 = o, Pos 3 = Δ , Pos 4 =+. Note how ensemble representation from the same positions and contexts 
cluster. (B) Each subplot shows the trials in one location plotted onto the first two PC axes for that 
position.  Color shows different valence, marker shows different items.  Valence difference is evident by 
color separation in Positions 1 and 4.  Item difference is shown by clustering of circles and diamonds in 
Position 4, for example. (C) The cumulative probability function of a Bayesian classifier estimating the 
probability that an ensemble was recorded in response to the same or different conditions from which the 
data was actually recorded.  (D)  The mean probability associated with decoding a trial to different item 
and place conjunctions that were the same and/or different as that in which the data was collected. The 
probability of classification to trials of the same condition was greater than classification between 
conditions within that dimension for: context, position, valence and item but not set.  These results are 
qualitatively similar as those found using correlation coefficients. Color coded IVSPC as in Figure S1, 
black  = decoded from same condition, red = decoded from different dimensions, grey = average of same 
and different. 
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Figure S4 related to Figures 2. (A) Top Two tetrode lesion tracks in CA1 Middle  Three lesion marks in 
CA1 and one in CA3 Bottom Two lesion marks in CA1. (B) The distribution of all identified lesion marks 
color coded by rat (n =4).  Histology from one rat was damaged when the drive was removed.   
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Figure S5 related to Figure 5. Stability analysis for six cells.  For each cell on the right is shown the 
waveforms of that unit (black) and the noise (light blue) plotted according to peak-valley on three of the 
four electrodes for two sessions (AB3 and CD1) separated by 24 hours.  The center plot shows the 
waveforms for those cells recorded during the two sessions.  On the right shows the place fields for the 
same cell recorded during two explorations of an open field separated by 24 hours.  

  



Supplemental Experimental Procedures  

Surgery 

Rats were anesthetized using a mixture of 3% isoflurane in oxygen and were injected with atropine (0.03 
mg/kg, s.c.) and buprenorphine (0.1 mg/kg, s.c.) before surgery and meloxicam (1 mg/kg, s.c.) 
immediately after surgery. An ophthalmic ointment was applied to the eyes, and temperature was 
maintained between 36°C and 38°C. Ringer's solution was injected to maintain hydration. Stainless steel 
bone screws, including two ground screws over the cerebellum, were inserted into the skull. A 2.0-mm-
diameter hole was drilled into the skull using a dental drill, and the dura was removed. The base of the 
microdrive was aimed at the CA1 and CA3 region of the right dorsal hippocampus (−3.6 mm 
anteroposterior, +2.9 mm mediolateral). The craniotomy was sealed with Kwik Sil (World Precision 
Instruments), the microdrive and ground wires were secured in place using dental acrylic (Henry Schein), 
and the surgical site was sutured shut. 

Electrophysiological recordings 

Individually movable 24-tetrode microdrives were built in-house. Tetrodes were spun from four nichrome 
wires (12.5 μm diameter; California Fine Wire, Grover Beach, CA, USA) and gold plated for an 
impedance of 200 kΩ at 1 kHz. At the end of surgery, each tetrode was lowered ∼850 μm into the brain. 
After 5 d of recovery, the tetrodes were lowered further over 7–14 d toward the CA1 and CA3 pyramidal 
cell layers.  After the experiments, 25 μA of current was passed through each tetrode for 30 s before 
perfusion and histological confirmation of tetrode placement.   

As reported previously (McKenzie et al., 2013) the electrical signal was referenced to a common skull 
screw and differentially filtered for single-unit activity (154 Hz to 8.8 kHz). The amplified spikes from 
each wire were digitized at 40 kHz, and monitored with the Multineuron Acquisition Processor (Plexon). 
Individual pyramidal neurons were isolated using Offline Sorter (Plexon) by visualizing combinations of 
waveform features (peak valley, valley, peak, principal components, nonlinear energy and timestamps) 
extracted from wires making up a single tetrode (i.e., “manual cluster cutting”). Single-neuron selectivity 
was verified by the interspike interval histograms that contained no successive spikes within a 2 ms 
refractory period. 

Apparatus. 

The apparatus consisted of two wooden chambers connected by an alleyway. Each chamber was 40.6 x 
40.6 x 43cm.  The central alley connecting the chambers was 40.6cm long.  Scented terra cotta pots could 
be positioned in two locations 30cm apart within each context at the corners of the context on the opposite 
side of the central alleyway.  Four contexts were used in the study, two in each chamber; each had inserts 
on the walls and floor with unique texture and color.  For shaping and pre-training, Context 0 was Clear 
Plastic taped to the wood chamber and Context 00 was Green Foam Strips taped to the wood.  During the 
training, two new contexts were used in the same chambers: Context 1 was black anti-static cloth and 
Context 2 was white sand paper.     
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Items were terracotta pots (diameter:10.2cm, height:10.2cm) weighted with sand, capped with melted 
wax, filled with different digging media (3cm deep), and scented with essential oils mixed with Crisco 
around the rim.  Scent concentration was calibrated for human just-noticeable-detection. Two items were 
used for pre-training: Item X (medium: purple plastic beads, scent: banana) and Item Y (medium: 
shredded paper, scent: hazelnut).  Four different items were used for training: Item A (scent: geranium, 
medium: multicolored triangle foam pieces), Item B (scent: maple, medium: gravel), Item C (scent: 
raspberry , medium: 1cm cut red coffee stirrers), and Item D (scent: cinnamon, medium: blue rubber 
mulch).   

Behavioral Training.   

Habituation and Shaping: Ten male Long-Evans rats were maintained at 85% of their free feed body 
weight throughout training and testing.  Rats were handled for approximately one week for 5-20 minutes 
daily during which point they were given Froot Loops which would later serve as motivation learning.  
The shaping for rats that would be implanted different slightly from that implemented for non-implanted 
rats. 

For implanted rats (n = 5), on the first two habituation days, rats freely explored the apparatus with 
Context 0 and 00 inserts for 20 minutes with Froot Loops placed randomly throughout the environment.  
On the third day, Froot Loops were only placed in the corners of the two contexts where the pots would 
later be present (Positions 1 - 4). On the fourth day, Froot Loops were placed inside of a pot that was 
filled 2/3 with wax and no other digging media. The single pot could appear in any of the four locations.  
On subsequent days, 1/4 Froot Loop pieces were used as reward buried within the pot that was to be 
associated with the context during pre-training (Item X in Context 0, Item Y in Context 00).   

For non-implanted rats, on the first two habituation days, rats learned to dig for buried Froot Loops in 
pots filled with sand in their home cage. On the third day, Froot Loops were placed inside of the same 
pots and rats were trained to shuttle back and forth digging in the pot for reward within the testing 
chambers using the pre-training contexts. Once rats reliably dug in the pots they were moved to the pre-
training phase.  

Pre-training.  For both implanted and non-implanted rats, at the start of a trial, the rat was blocked into 
one chamber and allowed to explore for 10 seconds. A divider was then put down and the two pre-training 
items (Item X and Item Y) were placed in the corners of the chamber. The divider was lifted and the rat 
was free to dig in either pot. In the Context 0, Item X contained a buried reward and in Context00, Item Y 
contained the reward.  If the rat dug (snout or paws touching the media) in the non-rewarded pot, no 
reward was given, both pots were quickly removed, and the trial was over. Rats were permitted to sample 
each pot multiple times in the absence of digging.  The position of the pot (two positions per context) was 
pseudo-randomized for each trial such that the same item would not occur in the same location on more 
than two consecutive occasions.  Once the rat consumed the Froot Loop, the trial ended, the alley dividers 
were lifted and the rat shuttled to the other context for the next trial. Every 10 trials, the rat was kept in the 
same context for two trials in a row to ensure that the rats did not adopt an alternating strategy. Every 10 
trials, there was one trial in which no pot contained a reward to ensure behavior was not guided by the 
Froot Loop odor.  Rats were rewarded on these trials after digging in the correct pot.   
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Implanted rats were given 40 trials/day which increased to 80 trials/day over 1-2 weeks. Training was 
carried out for approximately 3-4 weeks until the rat reached a criteria of 85% correct within a session. 
Once the rat reached criterion, they were scheduled for micro-drive implant surgery.  After at least one 
week of recovery, rats were retrained on the pre-training items while tetrodes were lowered into position 
(up to one month of daily training). 

Non-implanted rats received 40 trials/day until they performed greater than 85% correct in both contexts 
for two consecutive days.  

Training.  Training for the two cohorts was matched as closely as possible.  Rats were introduced to a 
novel set of contexts (Context 1 and Context 2) and a new set of items (Item A and Item B).  Item A was 
rewarded in Context 1 and Item B was rewarded in Context 2.  Otherwise the task was identical to the 
pre-training protocol.  Rats were given 75-100 trials were given per day, though more sampling events 
could be recorded if rats correctly rejected the non-rewarded pot (or incorrectly rejected the rewarded 
pot). Rats learned the reward contingencies for Item A and Item B over three days (AB1, AB2, and AB3).  
The day after AB3, rats were given a new item set (Item C and Item D) to be learned within the same 
contexts.  Item C was rewarded in Context 1, Item D was rewarded in Context 2.  Rats were again given 
75-100 trials per day for three testing days (CD1, CD2, CD3).  Rats were permitted to self correct on the 
first 10 trials of AB1 and CD1, though neural data collected on self-correct trials was not analyzed and 
only the first dig response was considered for assessment of learning.  

Implanted rats continued training for three more days.  The day after CD3, rats were given a block of 20 
trials with only Items A and B as a reminder followed by a block of 124 trials (ABCD1) in which the rat 
could either receive the first item set (Item A and Item B) or the second item set (Item C and Item D) 
from one trial to the next.  Items belonging to different sets were never presented on the same trial.  The 
order in which item sets were presented was pseudo-randomized with no more than three item set 
repetitions in a row. The two item sets were presented inter-mixed in the same fashion for the following 
two days (ABCD2 and ABCD3).  Data from AB1 from one rat was excluded due to experimenter error 
during behavioral training.    

Three of the five implanted rats also completed an open field recording session after each recording 
session.  The arena was 61x71cm and rats foraged for randomly distributed 1/4 Froot Loops for 20-30 
minutes to quantify place fields in a geometrically and visually distinct environment.  

Analysis 

Behavioral analysis 

To determine the trial in which rats reached criteria, rats were required to reach 10 out of 12 consecutive 
trials correct (binomial probability = 0.02) within a sliding window calculated separately for each context.  
The number of trials to criterion for each context was the last trial in which subjects performed less than 
chance.  The overall trials to criteria measure was determined as the trial number on which performance 
was above chance in each context on two consecutive trials.  The different criteria were employed 
because rats often developed an early strategy in which they would always dig for one item, causing 
higher than chance performance in one context and lower than chance performance in the other. 
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Single neuron analysis 

We recorded from 571 units from five rats over the three overtraining days: 292 units from CA1 and 
another 279 cells from CA3.  Based on observations during turning (e.g. passing stratum pyramidale in 
CA1), turn count, histology, and LFP profile (theta phase reversal between regions (Buzsaki et al., 1986) 
and stronger gamma in CA3 (Csicsvari et al., 2003)) cells were classified to be in either CA1 or CA3.  
Histology from one rat was damaged and could not be used to classify units, though in this rat all but one 
tetrode was directed to CA3.  Removal of this rat did not alter the conclusions from any of reported 
findings. 

Rats could sample the two items presented on each trial multiple times, and all item sampling events in 
which the rat dug in the rewarded pot and refrained from digging in the non-rewarded pot were 
considered in our analysis.  To estimate the hippocampal representation of every item sampling event, for 
each cell the number of spikes fired was counted for up to the first 2s of item sampling and this count was 
divided by the sampling duration to give the average firing rate for each cell on each item sampling event. 

Population analyses 

The goal of the experiment was to determine how the hippocampus codes related events.  In this task, 
events were the item sampling epochs that could be related by the following dimensions: context, position 
within a context, item quality, item valence, and item set.  When neural activity for events that were 
within a condition for a particular dimension (e.g. all item sampling events in the same position) was 
more similar than activity recorded during events that were between conditions (e.g. events in different 
positions), we interpreted this as evidence for coding of that dimension within the hippocampus.  The 
within and between conditions for each dimension are given in Table 1.  

Based on firing rates from these units, two different ensemble metrics were used to measure event 
similarity: ensemble correlation and a naive Bayesian classifier. These methods are described below. 

Ensemble Correlation. Firing rates for individual neurons were z-score normalized using the mean and 
standard deviation among all item sampling events to create a population vector of normalized rates for 
each event.  The Pearson's correlation coefficient of these population vectors was calculated for every pair 
of events.  

To calculate the strength of a coding dimension (e.g. item in position) using the ensemble correlation, we 
compared the average correlation for events within a condition (e.g. all item sampling events in the same 
position with Item A) for a task dimension (see Table 1) versus events that were between conditions for 
that dimension (e.g. events in the same position with Item A versus Item B) (Figure 3C, Figure S2A).  For 
each coding dimensions, a single d' was generated either for individual rats using correlation coefficients 
pooled across the three sessions (Figure S2D,E) or for the experiment as a whole (Figure S2A-C) by 
pooling the correlations recorded in the 15 different sessions. The d' was calculated as follows: 
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where, µW is the mean correlation coefficient for within condition events for that dimension with 
variance, σ2

W, and µB is the mean correlation coefficient for between condition events with variance,  σ2
B.  

The observed d' was compared to bootstrap data in which we randomly shuffled event identities 10000 
times and then recomputed the correlation analysis and d' metric for each bootstrap sample (Figure S2B).  
When the observed d' was larger than 97.5% of the 10000 shuffled d' metrics, the dimension captured by 
the d’ was considered to have been significantly coded by the hippocampus (Figure S2C).   

To determine whether the distribution of correlations differed from zero, one-way d’ metrics were 
calculated for each condition 

𝑑 𝑜𝑛𝑒𝑤𝑎𝑦
′ =  

µ𝑊
𝜎𝑊

 

and compared against one-way d’ metrics from the shuffled data set as described above.  For the shuffled 
data, the distributions for the one-way d’ metrics were centered on zero and normally distributed. 

Additional testing was done using each rat as the unit of analysis.  Here, a mean correlation coefficient 
was calculated for each rat for each condition.  Then a Fisher transform was applied to the means (N = 5 
for each condition) and Student t-tests were used to compare conditions to one another and each condition 
to zero (Figure S2D).    

To assess when different dimensions emerged during item sampling, we ran a similar analysis though 
firing rates were taken at different 250ms time bins centered ±3s around pot sampling (Figure 4).  Only 
events for which the rat's head remained over the pot for over 1.5s were included.  Significance testing 
was done using the same bootstrap analysis at each time point and comparing whether the observed d' was 
significant at p < 0.002 (Bonferroni correction for 24 time points). 

Bayesian Classifier 

As a separate test of event similarity that had a different set of assumptions, a naive Bayesian classifier 
was used (MATLAB R2012b function classify  with type set to 'diagquadratic') to determine 
the probability that a pattern or neural activity was recorded for each item and place combination (four 
items in four positions).  Due to uneven sampling, rats often preferred a particular item and position 
combination and would sample those more often.  Therefore, we only considered the last six sampling 
events for each item and place combination.  When there were fewer than six events, that category of item 
and position trial was eliminated.  Next, the z-scored population vector was calculated for each event, as 
described above.  The dimensionality of the ensemble representation for each event was reduced via 
principal component analysis (PCA) and only the first four components were used to categorize 
item/position combinations (Figure S3A,B).  Then, the mean, variance and covariance of each 
item/position four-dimensional ensemble representation was estimated with one event missing from each 
item and position combination.  Next, a multidimensional normal distribution with the estimated means, 
variance and covariance matrices were fit to the each cluster of item/position ensemble representations 
(maximum 16). Finally, the probability of the missing events being any of the possible item/position 
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combinations was calculated based on the probability of that item/position combination given the 
ensemble representation as estimated by the normal distributions above.  Since there is a probability 
associated with each item/position combination, we could determine whether there is hierarchy of coding 
probability with the correct item and place conjunction generating the highest probability, followed by 
correct valence, correct set, correct position, and finally correct context (Figure S3C,D). 

The degree of dimensional coding was calculated in a similar fashion as that for the correlation 
coefficients, though the d' was calculated based on the probability of classifying within a condition or 
between conditions for each dimension.  To test significance, we ran a bootstrap analysis in which event 
identities were scrambled 10000 times and if the observed d' for the difference in probabilities was greater 
than the 97.5% of the shuffled d' metrics, we concluded that the hippocampus coded that dimension. 

Dendrogram 

The hierarchical nature of the task schema was visualized using the MATLAB functions linkage and 
dendrogram.  On days in which Items A, B, C and D were presented, the median z-score firing rates 
were calculated for each of the 16 item and position combinations.  For each item and position 
combination, a large firing rate vector was created composed of the rates of every cell recorded from a 
session in which correct behavior was observed for every item in every position (N=560).  The 
agglomerative hierarchical cluster tree was then created using the unweighted average distance between 
pairs of vectors and the Pearson's correlation coefficient as the distance metric.  The nearest vector pairs 
were merged to form clusters.  Then the nearest clusters were merged iteratively until all 16 vectors were 
within a single cluster (Figure 3E). 

Cross-day analysis.  Due to the low number of stable cells recorded in each rat, using trial by trial 
ensemble analyses to compare activity across testing days was not possible.  Therefore, to assess the 
similarity of unit activity for one item set (e.g. AB) versus that for the other item set (e.g. CD), the median 
z-score firing rates were calculated for each of the 16 item and position combinations from both days.  
The z-score was calculated using the mean and standard deviation recorded for that day.  As described for 
the dendrogram, each item and position combination (n=16) was associated with a firing rate vector 
composed of the rates of every cell (N=38).  The pair-wise correlating of these vectors  across days 
generated an 8x8 similarity matrix which reflects the overlap in neural activity for each item and place 
combination.  Statistical testing was done by shuffling the item/position identity of each median rate 
vector and recalculating the correlations on the randomized data set.   

Cell stability criteria.  To determine whether the neural networks that coded the first item set (AB) were 
re-engaged to code related items of the second item set (CD), it was necessary to merge data across 24 
hours therefore requiring assessment of recording stability.  To increase the chances of stable recordings, 
from two days before the beginning of the experiment until the final recording day, no tetrodes were 
moved.  Thereafter, cell stability was assessed in four ways.  First, during manual cluster cutting, 
waveforms were viewed across time to visually confirm stability in the recording across days.  Second, to 
quantitatively ensure high waveform stability, the average waveforms on each tetrode (four concatenated 
waveforms) recorded on the first day were correlated with those recorded on the second and only units 
with a waveform correlation greater than 0.90 were included.  Next, we computed the L-ratio (Schmitzer-
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Torbert et al., 2005) for the merged recording sessions using the energy of each electrode and the first 
principal component of the energy normalized waveform from each electrode and only accepted units 
with an L-ratio less than 0.08.  Finally, after completing each test session three of the five rats ran for 20-
30 minutes on an open field retrieving scattered food reward.  Place fields were identified by calculating 
mean firing rate in 5x5cm bins and smoothing the binned rate map with a Gaussian kernel with σ = 15cm.  
Rate maps recorded across the two days were correlated, and only cells with a Pearson's correlation 
coefficients greater than 0.50 were retained.  For the merging of AB3 with CD1, these inclusion criteria 
yielded 38 cells in four rats (Rat1 = 9 cells, Rat2 = 20 cells, Rat3 = 1 cell, Rat4 = 0 cells, Rat5 = 8 cells) 
(Figure S5).  
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