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Orbitofrontal Cortex Encodes Memories within Value-Based
Schemas and Represents Contexts That Guide Memory
Retrieval
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There are a substantial number of studies showing that the orbitofrontal cortex links events to reward values, whereas the hippocampus
links events to the context in which they occur. Here we asked how the orbitofrontal cortex contributes to memory where context
determines the reward values associated with events. After rats learned object–reward associations that differed depending on the spatial
context in which the objects were presented, neuronal ensembles in orbitofrontal cortex represented distinct value-based schemas, each
composed of a systematic organization of the representations of objects in the contexts and positions where they were associated with
reward or nonreward. Orbitofrontal ensembles also represent the different spatial contexts that define the mappings of stimuli to
actions that lead to reward or nonreward. These findings, combined with observations on complementary memory representation
within the hippocampus, suggest mechanisms through which prefrontal cortex and the hippocampus interact in support of
context-guided memory.
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Introduction
Learning often incorporates the background cues, or context, in
which important events occur. Subsequently, the context can be
used as a cue to retrieve the memories relevant for goal-directed
behavior appropriate to that context (Greenspoon and Ranyard,
1957; Balaz et al., 1981). Here we consider the brain mechanisms
that support behavior where context guides the encoding and
retrieval of relevant memories.

Previous studies have strongly implicated the hippocampus in
the formation and retrieval of memories composed of events and
their associated contextual details (Smith and Mizumori, 2006;
Komorowski et al., 2009, 2013; Langston and Wood, 2010). Pre-
frontal cortex has been strongly implicated in the development of
abstract contextual organizations and the control of memory re-
trieval (Miller and Cohen, 2001; Peters et al., 2013). Prefrontal
areas and the hippocampal formation are strongly intercon-
nected (Delatour and Witter, 2002; Agster and Burwell, 2009;
Kondo and Witter, 2014), suggesting that an exchange of infor-
mation between these areas might support the learning and ex-

pression of memories where the context defines the outcomes of
events.

Of particular relevance to the current study, where context
guides the retrieval of appropriate reward associations of events,
many previous studies have implicated the orbitofrontal subdi-
vision of prefrontal cortex (OFC) in representing expected re-
wards or aversive outcomes (Rolls et al., 1996; Tremblay and
Schultz, 2000; Furuyashiki and Gallagher, 2007; Wallis, 2007;
Mainen and Kepecs, 2009; Schoenbaum et al., 2009; Sul et al.,
2010; Rudebeck and Murray, 2014). Several studies have shown
that OFC damage results in an inability to change behavior when
reinforcement contingencies are altered, as well as a loss of the
ability to distinguish currently relevant from irrelevant memories
(Schnider and Ptak, 1999; McAlonan and Brown, 2003; Ghods-
Sharifi et al., 2008; Young and Shapiro, 2009). Moreover, OFC
neuronal firing patterns change dynamically as rats learn new
reward outcomes associated with specific events (Schoenbaum et
al., 1999; Young and Shapiro, 2011). These observations strongly
suggest a role of the OFC in behavioral flexibility, possibly by way
of forming representations of outcome expectancies to inform
which cues and behaviors lead to reward (Ostlund and Balleine,
2007; Schoenbaum et al., 2009, 2011; Padoa-Schioppa and Cai,
2011). We specifically tested the hypothesis that OFC ensembles
contain a mapping of contextual cues and specific stimuli associ-
ated with behavioral responses and the values of consequent re-
inforcement outcomes (Wilson et al., 2014). Here we recorded
simultaneously from multiple OFC neurons as rats learned and
subsequently retrieved memories about which of two objects was
rewarded in each of two environmental contexts. Results from
single-neuron and neural population analyses revealed the devel-
opment of a systematic organized representation, or schema, of
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task-relevant dimensions observed during
object sampling, as well as strong coding
of the distinct environmental contexts
that predict the different object–reward
associations during context exploration
before object sampling.

Materials and Methods
Animals. Four male Long–Evans rats (Charles
River), weighing between 225 and 250 g at the
start of the experiment, were used in the study.
All animals were singly housed and maintained
on a 12 h light/dark cycle (lights on 8:00 A.M.
to 8:00 P.M.). Behavioral training and testing
were conducted during the light phase. Ani-
mals were kept at 85% of their ad libitum feed-
ing body weight and had ad libitum access to
water in the home cage. Procedures were con-
ducted according to the requirements set by
the National Institutes of Health and Boston
University Institutional Animal Care and Use
Committee.

Materials and apparatus. Behavioral training
and testing were performed in a custom-made
behavioral environment (160 cm length � 60
cm width � 40 cm height) that consisted of two
separate chambers (contexts) connected via an
alleyway, and access to each context was controlled by dividers at each
entry. Each context had a distinct texture on the floor and walls. The
objects consisted of ceramic pots (10 cm high with an internal diameter
of 9 cm), and each pot was filled with a distinct digging medium (e.g.,
purple beads, multicolor gum elastic squares, shredded paper, small peb-
bles, bits of yarn, and pieces of soda straws). Rewards were one-quarter of
a Froot Loop (Kellogg’s) buried in the pot assigned as rewarded. To
prevent the animal from being guided by the smell of the Froot Loop, the
media were sprinkled with crushed Froot Loops.

Behavioral protocol. OFC neuronal activity was monitored in rats dur-
ing the retrieval of memories where two distinct environmental contexts
(1 and 2) predict different reward expectations of behavioral responses to
two distinct objects (A and B) presented in either of two positions within
each context. When presented at either position in Context 1, choos-
ing Object A was rewarded and choosing Object B was not rewarded,
whereas in Context 2, choosing Object B was rewarded and Object A
was not (Fig. 1).

Animals were trained in successive stages. Initially, rats were trained to
dig for a reward (one Froot Loop) buried in a pot filled with unscented
sand. Once the animals had learned to dig reliably to retrieve the reward,
they were trained on a simple odor discrimination task in the home cage.
Two pots filled with sand and scented with two distinct odors (cinnamon
and cumin household blends) were placed at opposite corners of the
home cage, and on each trial the location of each odor was pseudoran-
domly determined. Cinnamon was always rewarded, and cumin was
never rewarded, and the animal had to learn which odor was associated
with reward. Once the animal reached a criterion of 80% correct across
20 consecutive trials, the animal was habituated to the subsequently used
testing apparatus by being allowed to explore for 30 min while retrieving
scattered Froot Loops.

During training, each session consisted of 90 trials, 45 trials in each
context. Each trial consisted of a context exploration period that lasted
10 s, followed by an object-sampling period. During the context explo-
ration period, the animal was allowed to enter and explore one of the
contexts in the absence of the objects (Fig. 1). At the end of this period, a
divider was positioned within the context area to keep the animal away
from the pot positions, while Objects A and B were placed in the corners
opposite the entry to the context. Once the pots were in place, the divider
was removed, allowing the rat to approach the pots from within the
context. In each problem, reward and nonreward associations were arbi-
trarily assigned to object pairs, and one-quarter of a Froot Loop was

buried in the pot accordingly on each trial. If the animal first approached
the rewarded object, it could dig in the pot to retrieve the food reward. If,
however, the nonrewarded object was approached first, the animal had to
refrain from digging in the pot, and then sample the other object to
retrieve a reward. If the animal did not approach a pot within 20 s, the
trial was terminated, and the animal was shuffled to the other context.
Object position within each context was pseudorandomized, and no ob-
ject occurred in the same location for more than two consecutive trials.
After most trials, the animal moved into the opposite context via the
alleyway. However, on nine trials for each context, the animal remained
in the same context for an additional trial to prevent a strict alternation
strategy. On these trials, the animal was moved away from the objects
using a divider then, after a context exploration period during which the
object positions were changed on half of these trials, the divider was
removed, allowing access to the objects. In the initial problem acquired
before implantation of electrodes, animals were trained to reach a per-
formance criterion of 80% correct within a session, and they required
three to six sessions to reach this criterion. After microdrive implant,
animals were retrained on the same problem, and presented with four to
nine new object– context association problems that involved novel dig-
ging mediums and contextual cues. Following the initial learning session
in which criterion performance was obtained on a new problem, animals
were presented with the same problem in an additional post-training
session, which provided the data for this study.

Surgery. Anesthesia was induced by the inhalation of 5% isoflurane
(Webster Veterinary Supply) in oxygen and was maintained at 2–2.5%
throughout surgery. Animals were given the analgesic Buprenex (Bu-
prenorphine hydrochloride, 0.03 mg/kg, i.m.; Reckitt Benckiser Health-
care Ltd.) and placed in a stereotaxic frame (KOPF), where an incision
was made along the midline to expose the skull. Animals were implanted
with microdrives that contained 24 independently drivable tetrodes
aimed at the ventral orbital (VO)–lateral orbital (LO) regions at coordi-
nates obtained from Paxinos and Watson (2007) (anteroposterior, 4.5
mm; mediolateral, �1.6 mm). Each tetrode consisted of four 12 �m RO
800 wire (Sandvik Kanthal HP Reid Precision Fine Tetrode Wire, Sand-
vik) that was gold plated to reduce impedance to between 180 and 220 k�
at 1 kHz. At the end of surgery, each tetrode was lowered �2.5 mm into
tissue. Postsurgery, animals were given Buprenex (0.03 mg/kg, i.m.), and
Cefazolin (330 mg/ml, i.m.; West-Ward Pharmaceuticals) Animals were
rested for 1 week before behavioral testing resumed.

Neural recordings. Electrical recordings were made using a 96-channel
Multichannel Acquisition Processor (Plexon). Each channel was ampli-

Figure 1. A, Context-guided object–reward association task, in which animals had to learn to associate objects with reward or
nonreward, depending on the environmental context in which they were presented. Each trial began with the animal exploring
one of the two contexts for 10 s with the objects absent. Then a barrier was used to hold the animal on one side of the context while
objects were placed on the other side, then the barrier was removed so that the animal could approach and sample the pots. In
Context 1, Object A was rewarded and not Object B, whereas in Context 2 Object B was rewarded and not Object A. The animal had
to dig in the pot that contained the digging medium associated with reward, and refrain from digging in the nonrewarded pot. B,
Picture of one context with two pots that contain distinct digging media (left, multicolor gum elastic squares; right, purple beads).
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fied and bandpass filtered for both single-unit activity (154 Hz– 8.8 kHz)
and local field potentials (1.5 Hz– 400 kHz). Spike channels were refer-
enced to another electrode in the same region to remove movement-
related noise. Action potentials were detected by threshold crossing and
digitized at 40 kHz. Each recording of units and local field potentials was
made using SortClient and Cineplex Studio for video recording (Plexon).
Single units were isolated using Offline Sorter (Plexon), and behavioral
events were time stamped using Cineplex Editor (Plexon). All data anal-
ysis was performed using custom scripts for MATLAB (MathWorks). To
reduce the likelihood of recording from the same neuron across multiple
sessions, tetrodes were lowered before each testing session (�0.018 mm
or more), and the amount to which a tetrode was lowered was based on a
visual inspection of the identified units.

ANOVA on single neuron firing patterns. To determine the selectivity of
single-neuron activity to object, position, and context during object sam-
pling, firing rates were calculated for each sampling event beginning
when the nose of the animal reached the edge of a pot and ended when the
rat began to dig or withdrew on all events in which a correct response was
subsequently made. Statistical differences in mean firing rate among ob-
jects, positions, and contexts for each neuron were determined using a
three-factor nested ANOVA with context (two levels), position (two lev-
els nested within each of the two contexts), and object (two levels) as
factors. To determine the selectivity of single-neuron activity for differ-
ent context exploration events, firing rates were calculated for each con-
text exploration event beginning when the animal entered a context and
for the subsequent 5 s. Then statistical differences in mean firing rate
between explorations of the two distinct contexts were determined using
a one-way ANOVA with context as a factor (two levels). A p value of 0.05
was used to determine significance.

Representational similarity analysis of neural ensemble activity patterns.
Firing rates for each neuron obtained in the single-neuron analyses de-
scribed above were z-transformed across all object-sampling events, then
the mean z-transformed firing rate associated with each type of object-
sampling event (e.g., Object A in Position 1 within Context 1) and for
exploration periods in both contexts were calculated to compose a set of
population vectors for each recording session. Neural ensemble firing
patterns were explored using a representational similarity analysis (RSA)
to determine the extent to which multiple task dimensions were encoded
by OFC (Kriegeskorte et al., 2008; McKenzie et al., 2014). To measure the
similarities between ensemble representations of different types of
object-sampling events, pairwise Pearson product–moment correlations

were calculated between population vectors taken for events that were
the same or different in each of the three dimensions (object, position,
and context), thus composing six basic comparisons composed of corre-
lations between population vectors for object-sampling events involving
the same or different objects in the same or different positions and the
same or different contexts (see Fig. 4A). The magnitude of the correlation
coefficient for each comparison reflects the representational similarity of
events being compared. A positive correlation coefficient indicates rep-
resentational similarity in population coding of the dimension tested;
zero correlation indicates independence of representations for that di-
mension; and a negative correlation coefficient (i.e., anticorrelation)
suggests strong pattern separation of that dimension by the neuronal
ensemble.

First, to measure the extent to which identical events were coded sim-
ilarly, population vectors for odd-numbered events were correlated
against those for even-numbered events for each of the two objects
within each of the two positions in each of the two contexts. The mean of
those eight correlation coefficients was used to measure the ensemble
similarity for identical events within each of the 33 recording sessions
(see Fig. 4A, Bar 1). For all other comparisons, population vectors for
object-sampling events of each type were correlated with those for a
different type of event. To measure the similarity of ensemble represen-
tations for different objects sampled at the same position, population
vectors for odd-numbered events for one object were correlated against
even-numbered events for the other object, and vice versa (even-
numbered events for the first object against odd-numbered events for the
second object), to compose eight total correlations, and the mean of
those correlation coefficients was used to measure the representational
similarity for different objects (holding position and context constant) in
each session (see Fig. 4A, Bar 2). The same approach was used to measure
the representational similarities for the same or different objects at dif-
ferent positions within a context, including the separation of odd- and
even-numbered events to ensure that similar amounts of data were used
in all analyses. To assess the similarity of ensemble representations for the
same object between positions, population vectors for sampling events
involving an object in one position were correlated with those for the
same object in the other position within the same context (see Fig. 4, Bar
3) or with that for the other object in the other position within the same
context (see Fig. 4, Bar 4), again comparing odd-numbered against even-
numbered events and vice versa. To assess the similarity of ensemble
representations of objects between contexts, population vectors for odd-
numbered and even-numbered events for the same object (see Fig. 4, Bar
5) or different objects (see Fig. 4, Bar 6) at positions between contexts
were similarly correlated.

We also measured the extent to which ensembles represented context
exploration events within the two environments as similar or distinct. To
measure the similarity of ensemble representations of events involving
exploration of the same context, population vectors for odd-numbered
versus even-numbered exploration events within each context were cal-
culated separately, and then the population vectors for odd-numbered
events were correlated with those for even-numbered events, and vice
versa, for each context, and the mean of those correlation coefficients was
used to measure the extent to which contexts were represented by OFC
ensembles. To measure the similarity of ensemble representations of
exploration events between contexts, population vectors for odd-
numbered events in one context were correlated with even-numbered
events in the other context, and vice versa, and the mean of those corre-
lation coefficients was used to measure the extent to which events involv-
ing the exploration of meaningfully different contexts were represented
similarly (see Fig. 7B).

Bootstrap analysis. For each neuron, firing rates were shuffled between
sampling event identities (e.g., sampling of Object A in Position 1 in
Context 1 is an event identity). For each shuffle, the mean firing rate of
each neuron for each possible event identity (eight identities in total; two
objects and four positions) was recalculated. This reassignment of firing
rates between event identities was performed for each neuron in the
population vector, and where each neuron in the vector now had a new
mean firing rate for each event identity. Correlations were then per-
formed on population vectors for each of the comparisons shown in

Figure 2. Reconstruction of recording sites in VO and LO cortices at �4.20, 4.68, and 5.16
mm anterior to bregma in animals recorded from coordinates taken from Paxinos and Watson
(2007). Black dots indicate the site of the tetrode tip after recording had ended. Photomicro-
graph depicts burn marks from tetrode tips.
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Figure 4A to obtain a correlation coefficient for each comparison. This
procedure was repeated 10,000 times, and the observed correlation coef-
ficient obtained for each comparison before shuffling the firing rates was
compared with a distribution of correlation coefficients from the shuf-
fled dataset. To determine whether differences obtained between condi-
tions of interest (see Fig. 4A, between bars) were greater than that
expected by chance, we first calculated the difference between the mean
correlation coefficient r for one condition (e.g., Bar 1, mean r � 0.36) and
the mean correlation coefficient r for the other condition (e.g., Bar 2,
mean r � �0.19) by subtracting the value of r for one condition from the
value of r obtained for the other condition (rdiff). We then compared the
rdiff obtained against a distribution of 10,000 rdiff values for that same
comparison after the firing rates had been shuffled between event iden-
tities. To account for multiple comparisons, in analyses of object-
sampling events, a Bonferroni correction was applied by dividing p �
0.05 by the number of conditions (see Fig. 4A, six comparisons), which
yielded a statistical threshold of p � 0.05/6 � 0.008. Statistical signifi-
cance at p � 0.008 was reached when the observed correlation was 	9920
of the correlations for shuffled datasets. For context exploration events,
p � 0.05 was divided by two conditions (see Fig. 7B, two comparisons),
which yielded a statistical threshold of p � 0.05/2 � 0.025). Statistical
significance at p � 0.025 was reached when the observed correlation was
	9700 of the correlations for shuffled datasets.

Dendrogram analysis of the organization of ensemble representations. To
explore the organization of ensemble representations for the eight types
of object-sampling events (i.e., conjunctions of two objects in two posi-
tions within two contexts), we generated composite ensemble represen-
tations for each event type using the firing rates of all of the 394 neurons
collected across 33 sessions. The composite population vector for each
type of event was calculated as follows: for each neuron, the number of
spikes observed was divided by the sampling duration on each event, then
these firing rates were standardized into z-scores using the mean and SD
of firing rates across events, then the mean z-score firing rates across
events was calculated. The relationships among the composite popula-
tion vectors for the eight types of events were then assessed using an
agglomerative hierarchical clustering algorithm (MATLAB R2013b
function “linkage”). The agglomerative hierarchical clustering algorithm
takes the unweighted average distance between pairs of the eight vectors,
where the Pearson’s correlation coefficient was used as the distance met-
ric. Of the eight vectors, the two that were nearest were combined, then
calculations of distances between the revised set of vectors was repeated,
and the nearest two vectors were combined; this process was repeated
iteratively until only two combinations remained (Fig. 4B). The height of
each line in the dendrogram represents the similarity (mean r value)
between the event types being connected.

Dynamics of ensemble coding during object sampling. To determine the
time course of ensemble representations of position and objects and their
associated values during object sampling, we used a d
 metric to compare
the average correlations for the same [e.g., Object A (or B) to itself] and
different comparisons (e.g., Object A to Object B) for each of these di-
mensions (see Fig. 8). Only the first object-sampling event on each trial
and only events that were longer than 500 ms were included in the anal-
ysis. Correlation analysis was performed for sequential 200 ms time bins
starting after the approach to the pot began and �3.4 s and ending at
�3.4 s relative to the onset of object sampling. The d
 metric estimated
the separation between the mean correlations for the same and different
conditions, and applied the combined variance of each same and differ-
ent condition to obtain the distance between means of the conditions
compared. Thus, the greater d
 is from 0, the greater the representational
separation for comparisons made. The d
 values were obtained using the
following equation, where mean1 and SD 2

1 reflect the correlation mean
and variance, respectively, for one condition, and mean2 and SD 2

2 reflects
the correlation mean and variance, respectively, for the second condi-
tion. To account for multiple comparisons, we applied Bonferroni cor-
rection by dividing p � 0.05 by the number of bins (34 bins), which
yielded a p value of 0.05/34 � 0.0015 for statistical significance to be
reached:

d
 �
mean1 � mean2

�1/ 2�SD dev1
2 � SD dev2

2)
.

Histology. After completion of behavioral testing, tetrode placements
were confirmed by creating a lesion at the tetrode tip by passing a 40 �A
current until the connection was severed on each tetrode wire. Animals
were subsequently overdosed with systemic injection of Euthasol (Virbac
AH) and were perfused intracardially with 0.9% saline followed by 10%
formalin phosphate (VWR). Brains were removed and placed in a 20%
sucrose solution until processed. Using a cryostat (CM 3050s, Leica Bio-
systems), brains were cut into 35 �m coronal sections and mounted onto
presubbed glass slides, and stained with cresyl violet to determine the
location of tetrode tip lesions. Tetrode tip lesions were confirmed to be
localized within either ventral or lateral orbitofrontal cortex (Fig. 2) us-
ing the stereotaxic atlas of Paxinos and Watson (2007). We were not able
to determine which exact tetrode belonged to ventral or lateral OFC.

Results
Across four animals, a total of 394 single neurons in the ventral
and lateral orbital cortices (Fig. 2) were recorded over 33 sessions
that followed the initial learning of each problem. Rat 1 contrib-
uted 69 neurons (6 sessions), Rat 2 contributed 37 neurons (9
sessions), Rat 3 contributed 91 neurons (12 sessions), and Rat 4
contributed 197 neurons (6 sessions). During these sessions, an-
imals performed the task with high accuracy (mean, 95% correct;
SEM, 0.7% correct; range, 92–100% correct). Analyses separately
explored neural activity patterns during the period of object sam-
pling leading to the behavioral response and during the preceding
period of context exploration when rats entered and explored one
of the contexts before being presented with the objects. Our anal-
ysis of these trial periods characterized both single-neuron firing
patterns and the firing patterns of simultaneously recorded neu-
ral ensembles in OFC.

OFC neurons encode each dimension of context-guided
object–reward associations
OFC neurons encoded the full range of dimensions that charac-
terize each object-sampling event. Overall, 194 of 394 isolated
neurons (49%) encoded task-related dimensions of object-
sampling events that were followed by the correct behavioral
response to the presented stimulus. Substantial proportions (14 –
16%) of the neurons fired differentially associated with the ob-
ject, position, or context dimensions (main effects), although few
of these fired exclusively associated with one dimension (Table
1). A similar proportion of neurons encoded objects in specific
positions within a context (significant object � position interac-
tion). Most notably, 38% of neurons distinguished combinations
of objects and the context in which they were sampled (significant
object � context interaction), and the firing pattern of 	50% of

Table 1. Encoding of task dimensions by single cells

Dimensions

Inclusive Exclusive

Count % Count %

Context 60 15 18 5
Position 54 14 13 3
Object 62 16 13 3
Object � context 149 38 76 19
Object � position 48 12 5 1
Context exploration 55 14 47 12

Encoding of task dimensions by single neurons. Number and percentage of neurons (from 394 neurons recorded)
that met statistical criteria for differentiating task dimensions during object sampling, and during context explora-
tion. In the “Inclusive” column, neurons may be counted in more than one single dimension or interaction. For
context exploration, inclusive involves neurons that also differentiated task dimensions during object sampling.
Each value in the “Exclusive” column had significant selectivity for only the particular dimension or interaction
specified.
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these neurons was characterized by equivalent activation during
the sampling of different objects in the opposing contexts, thus
reflecting the common reward value of these events. However,
reward associations did not fully account for differences in the
activity across object– context combinations in many other cells.
Figure 3 shows the firing patterns of four example neurons. Cell 1
fired strongly and at equivalent rates during the object-sampling
events associated with reward (Object A in Context 1 and Object
B in Context 2) and not during object sampling that was not
associated with reward (object � context interaction: F(1,103) �

202.84, p � 0.0001), and did not fire differentially associated with
objects or contexts alone (main effects) or other dimensions. Cell
2 fired during object-sampling events associated with nonreward
(Object B in Context 1 and Object A in Context 2) and did not fire
during object-sampling events associated with reward (object �
context interaction: F(1,121) � 9.6, p � 0.002); the activity of this
cell also differed across contexts (main effect: F(1,121) � 18.59, p �
0.0001) and between objects (main effect: F(1,121) � 8.92, p �
0.003), indicating that reward association was not the only di-
mension encoded. Cell 3 fired selectively to the nonrewarded

Figure 3. Examples of single-cell selectivity to different task dimensions during the sampling of objects in each context. Rasters and perievent histograms depict activity patterns of example
neurons during the sampling of each object (A or B) at each position (1 or 2) within each context (1 or 2). Rewarded (�), unrewarded (�). Rasters show spikes for each object-sampling event. Time
0 indicates the onset of object sampling. The histogram represents firing rate in 100 ms time bins.
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Object B in Context 1 (main effect object: F(1,103) � 20.62, p �
0.0001) but was not object selective in Context 2 (object � con-
text interaction: F(1,103) � 23.85, p � 0.0001; main effect context:
F(1,103) � 16.9, p � 0.0001). Finally, Cell 4 fired selectively during
object sampling at Position 2 within Context 1 compared with the
other positions (main effect position: F(1,101) � 14.21, p �
0.0001), and fired selectivity within Context 1, which included its
preferred position, compared with Context 2 (main effect con-
text: F(1,101) � 5.01, p � 0.03). Thus, in addition to reward asso-
ciating firing, many individual cells also differentiated the
objects, positions, and contexts. More generally, while some cells
exclusively encoded only one of the task dimensions, most exhib-
ited mixed selectivity and overall, ensembles encoded the full
range of task dimensions, consistent with high-dimensional en-
semble representations that can support a broad domain of cog-
nitive functions (Rigotti et al., 2013). To examine whether there
were differences in firing patterns on trials that were performed
sequentially within the context, we extracted the trials in which
sampling events occurred within the same context for two suc-
cessive trials (nine repeat trials per context in a session) and per-
formed a one-way ANOVA on the firing rates, combined across
all neurons, for Object A and Object B during the first and second
(repeat) trial. We observed no significant differences in firing
rates during object sampling between the two successive trials
(F(3,131) � 0.40, p � 0.75), suggesting that a repeat trial within a
context did not alter spiking activity during object sampling.

OFC neuronal ensembles represent multiple task dimensions
during object sampling
To explore how neural populations represented the task dimen-
sions, we used an RSA in which z-scored firing rates of a set of
simultaneously recorded neurons were composed into popula-
tion vectors (lists of mean firing rates) for each event identity and
then the population vector for an event identity was cross-
correlated against that of other event identities (see Materials and
Methods). These correlations provided a measure of the similar-
ity of population representations associated with each task di-
mension. The RSA analysis was applied to population vectors
composed of data from ensembles of 3–50 simultaneously mon-
itored neurons (mean, 14 neurons). The analyses revealed strik-
ing ensemble representations of each of the task-relevant
dimensions during object sampling (Fig. 4A).

Value coding
As a first approach to exploring value coding, based on the ob-
servation of a large proportion of single OFC neurons whose
firing patterns differed depending on the associated reward value
(rewarded or nonrewarded), we examined comparisons in which
the position and context dimensions were held constant while the
objects that predicted the same or different reward value varied.
We observed a strong positive correlation between population
vectors of object-sampling events that involved the same object in
the same position, and therefore the same reward value (Bar 1:
mean r � 0.36, SEM � 0.04), and a pronounced negative corre-
lation between population vectors for events that involved differ-
ent objects in the same position and therefore opposite reward
value (Bar 2: mean r � �0.19, SEM � 0.04; Bar 1 vs Bar 2, p �
0.0001). The same pattern emerged when we compared popula-
tion vectors for object-sampling events that involved the same
object, and therefore same reward value, in different positions in
the same context (Bar 3: mean r � 0.22, SEM � 0.04) versus
different objects in different positions and therefore different re-
ward values (Bar 4: mean r � �0.27, SEM � 0.03; Bar 3 vs Bar 4,

p � 0.0001), as well as in the comparison of population vectors
for object-sampling events that involved the same object in dif-
ferent contexts, and therefore opposite reward value (Bar 5: mean
r � �0.22, SEM � 0.04) versus different objects in different

Figure 4. Population analyses. A, Mean Pearson correlation coefficient (r) of population
vectors (SEM across sessions). Diff, Different. “Same object” and “different object” refer to
comparisons of types of events that involve the same or different object identities, respectively.
Same position and different position refers to comparisons of types of events that involve the
same or different object positions within a context, respectively. “Same context” and “different
context” refers to comparisons of types of events that involve the same or different contexts,
respectively. Note that events that are compared across contexts necessarily involve different
positions; these are considered different context comparisons. The specific comparisons were as
follows: 1, Same object in the same position and context (e.g., Object A events versus other
Object A events in Position 1 and Context 1); 2, different objects in the same position and context
(e.g., Object A vs B in Position 1 and Context 1); 3, same objects in different positions in the same
context (e.g., Object A in Position 1 vs Object A in Position 2 in Context 1); 4, different objects
in different positions in the same context (e.g., Object A in position 1 vs Object B in Position 2 in
Context 1); 5, Same objects in different positions within different contexts (e.g., Object A
in Context 1 vs Object A in Context 2); and 6, different objects in different position and in
different contexts (e.g., Object A in Context 1 vs Object B in context 2). B, Dendrogram shows the
organization of event dimensions in OFC ensembles during object sampling as a function of
similarities of population vectors along different dimensions of events. Note the strong dissim-
ilarity (anticorrelation) between events with opposite associated reward values, the indepen-
dence of representationsfordifferentrewardedobjects indifferentcontexts,thesimilarityofdifferent
nonrewarded objects in different contexts, and the stronger similarity of the same events in different
positions. C1, Context 1; C2, context 2; Obj, object; left, left position; right, right position.
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contexts and therefore the same reward value (Bar 6: mean r �
0.08, SEM � 0.04; Bar 5 vs Bar 6, p � 0.0001).

We also performed additional confirmatory analyses combin-
ing different types of comparisons that shared the same reward
values across variations in other dimensions. In this analysis, we
measured the overall representational similarities of ensemble
firing patterns during object-sampling events associated with the
same reward value by combining the comparisons for all types of
events with the same reward outcome (Fig. 4A, compare Bars 1, 3,
and 6), and found a very high strength-of-value coding (mean r �
0.25; SEM � 0.03). Conversely, when we combined the correla-
tions that compare all types of events with opposite reward value
(Fig. 4A, compare Bars 2, 4, and 5), we found a strong anticorre-
lation, indicating striking differentiation of opposite reward
value by OFC ensembles (mean r � �0.24; SEM � 0.02). We
next compared the combined correlations for all types of events
with same reward value (Bars 1, 3, and 6) against the combined
correlations for all types of events with different reward values
(Bars 2, 4, and 5), and confirmed the difference between repre-
sentational similarities of population coding for object-sampling
events associated with the same versus the opposite reward value
(p � 0.0001). Together, this pattern of representational similar-
ities suggests that OFC ensembles have similar representations
for events associated with the same reward value, even those in-
volving different objects, locations, or contexts, albeit at different
strengths associated with these other dimensions. Conversely,
representations of events associated with opposite reward value
are strongly dissimilar.

Object in context coding
Guided by the findings on single-cell analyses that revealed a
substantial proportion of neurons that were differentially acti-
vated during sampling of the same object in distinct contexts (Fig.
3), we next explored the representation of distinct object– context
(i.e., different object and different context) combinations that
shared the same reward outcomes. This was accomplished by
comparing correlations of events that involved the same object at
different positions in the same context, and therefore having the
same value (Bar 3: e.g., Object A vs Object A at different positions
within Context 1, both rewarded) versus that for events that in-
volved different objects in different contexts, and therefore had
the same value (Bar 6: e.g., Object A in Context 1 vs Object B in
Context 2, both rewarded). This correlation for events with the
same object– context combinations was greater than that for the
correlation between population vectors for events that involved
different objects and different contexts with the same reward
value (Bar 3 vs Bar 6, p � 0.0001), indicating that object– context
coding occurred beyond representation of the reward outcomes
of different events per se.

The coding of object– context combinations differed for the
subset of object-sampling events associated with reward and for
the subset of events associated with nonreward. Population vec-
tors for object-sampling events that involved the same object–
context combination with an expectation of reward were
positively correlated (Fig. 4A, Bar 3, for rewarded events only;
mean r � 0.20, SEM � 0.03). This correlation between popula-
tion vectors for events with the same object– context combina-
tions and reward association was greater than that for different
object– context combinations associated with reward (Bar 6 for
rewarded events only: mean r � �0.007, SEM � 0.05; Bar 3 vs Bar 6
for rewarded events only, p � 0.001). Also, population vectors for
object-sampling events that involved the same object–context com-
bination with an expectation of nonreward were positively corre-

lated (Bar 3 for nonrewarded events only: mean r � 0.25, SEM �
0.04). However, correlation between population vectors for events
with the same object–context combinations for nonrewarded events
was not significantly greater than that for opposite nonrewarded
object–context combinations (Bar 6 for nonrewarded events only:
mean r � 0.18, SEM � 0.05; Bar 3 vs Bar 6 for nonrewarded events
only, p � 0.14, n.s.). Finally, representations for nonrewarded events
in different contexts were more similar than those for rewarded
events, and the difference in representational similarity between re-
warded and nonrewarded events was significant (p � 0.001).

Position coding
To assess position coding, we compared population vectors for
object-sampling events in which position differed while the reward
value and object–context dimensions were held constant. Position
coding was evident in stronger similarity of population vectors for
object-sampling events that involved the same object in the same
position (Fig. 4A, Bar 1) versus events with the same object in the
alternate position within a context (Fig. 4A, Bar 3), where both com-
parisons were associated with the same object–context combination
and reward value while differing only in position (Fig. 4A, Bar 1 vs
Bar 3; p � 0.001). Also, the correlation between population vectors
for events with different objects in the same position (and therefore
different values; Fig. 4A, Bar 2) was less negative than that for events
with different objects in the alternate position within the same
context (Fig. 4A, Bar 4), but this difference was only margin-
ally significant in the Bonferroni-corrected test (Fig. 4A, Bar 2
vs Bar 4; p � 0.03).

The same representational pattern is apparent when small
neuronal ensembles are eliminated
For the analysis described above, all ensembles that were com-
posed of at least three neurons were included. To determine
whether the activity patterns of very small ensembles might have
outsized influence on the overall results, we repeated the analysis
including only ensembles of at least 10 neurons, thus excluding
14 of 33 sessions and leaving out the data from Rat 2 where all
ensembles involved �10 neurons. However, even with this re-
duced dataset, the population firing patterns were strikingly sim-
ilar to those including the full dataset (compare Fig. 5A, Fig. 4A).
To assess whether population representations were similar after
excluding ensembles consisting of �10 neurons, we made three
comparisons (Fig. 5A). We compared all correlations between
population vectors for object-sampling events that involved the
same value (Fig. 5A, combined correlations of Bars, 1, 3, and 6)
versus those for all events that involved different values (Fig. 5A,
combined correlations of Bars 2, 4, and 5). Population representa-
tions continued to show strong value coding, similar to the overall
combined analysis (p � 0.001). Additionally, we compared corre-
lations between population vectors of sampling events that in-
volved the same object in the same position within a context with
those for events that involved the same object between positions
within each context (Fig. 5A, Bar 1 vs Bar 3), and population
representations continued to show position coding (p � 0.008).
Finally, we compared the correlations of population vectors of
sampling events that involved the same object between positions
within a context (therefore holding reward value constant) versus
those for events that involved different objects in different con-
texts (thus also holding reward value constant; Fig. 5A, Bar 3 vs
Bar 6), and population representations continued to show
object-in-context coding (p � 0.008; Fig. 5A).
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The same representational pattern is apparent in each subject
To assess whether ensemble representations were similar across
individual animals, we made the same three comparisons for each
subject as in the analysis of ensembles consisting of 	10 neurons
(Fig. 5B). All animals but one (Rat 3) had population represen-
tations that showed strong value coding (Fig. 5B, compare com-
bined correlations from Bars, 1, 3, 6, and Bars 2, 4, 5; all p �
0.008). All animals but one (Rat 2) had population representa-
tions that showed position coding (Fig. 5B, Bar 1 vs Bar 3, p �
0.008). Finally, Rat 3 had population representations that showed
significant object-in-context coding (Fig. 5B, Bar 3 vs Bar 6; p �
0.008), and Rats 2 and 4 had marginally significant object-in-
context coding in these Bonferroni-corrected tests (p � 0.05; Fig.
5B). Thus, even with very limited datasets in these analyses, and
while not all of the dimensions were significantly coded in every
animal, the overall pattern for each animal was remarkably sim-
ilar to that of the group analysis (Fig. 4A).

The same representational pattern is apparent regardless of
the order of sampling events
Since medial prefrontal neurons have been observed to be sensi-
tive to the temporal order of events (Hyman et al., 2012), we
created separate RSAs for object-sampling events only when the
rewarded object was approached first and only when the same
object was approached second. We compared each equivalent
condition (Bars 1– 6) for when the rewarded object was ap-
proached first with that of when the rewarded object was ap-
proached second, and observed no significant changes as a result
of temporal order (all conditions, n.s.), indicating little effect of
the order in which objects were sampled within a trial (Fig. 6).
Thus, it appears that each object-sampling event is processed by
OFC separately from the preceding event.

OFC neural ensembles represent a systematic organization of
task dimensions
The dendrogram analysis (see Materials and Methods) is consis-
tent with the possibility of a highly systematic structure of the

Figure 5. A, RSA for group data from ensembles that consisted of at least 10 neurons. B, RSAs
for each animal. Diff, Different. See description of conditions in Figure 4A.

Figure 6. A, Representational similarity analysis (RSA) including only events that involved
the rewarded object as the first object-sampling event in a trial. B, RSA including only events
that involved the rewarded object as the second object-sampling event in a trial. See description
of conditions in Figure 4A. C, Dendrogram including only events that involved the rewarded
object as the first object-sampling event in a trial. D, Dendrogram including only events that
involved the rewarded object as the second object-sampling event in a trial. Top level, Value;
middle level, object-in-context; bottom level, position. See description of levels in Figure 4B.
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population representation indicating successive levels of increas-
ing representational similarity among the relevant task dimen-
sions (Fig. 4B). At the top of the very systematic organization
suggested by this analysis, and farthest apart in the ensemble
representation, are events with opposite reward values. This di-
mension is notably reflected in an anticorrelation, indicating
strong pattern separation of representations associated with dif-
ferent reward outcomes. At the next level is a separation of events
that occur in different contexts within each reward value condi-
tion, and this dimension is observed within each reward outcome
level. Notably, the associated correlation value was near zero for
rewarded events, suggesting the independence of representations
for rewarded events in different contexts, whereas the correlation
for nonrewarded events was positive, indicating similarity in the
representation of events not associated with reward (see above for
a statistical comparison). Next, events that involve the same ob-
ject and outcome at different positions within a context have
somewhat distinct representations, and this dimension is ob-
served below each object– context condition. This overall pattern
suggests that representations of object-sampling events are orga-
nized into two actively separated networks defined by different
reward values, and within each value-based network, events are
categorized by the objects and the context in which they occur
followed by their locations within a context. Using Catalan num-
ber generation ((2n)!/(n � 1)!n!), there could be 429 possible
dendrogram outcomes, and therefore the possibility of the cur-
rent systematic structure happening by chance is low.

During each trial OFC ensembles evolve to represent key
elements of each event
Context exploration
Even before objects were sampled, OFC neurons and ensembles
encoded the context that predicted object–reward assignments.
To determine context selectivity for each neuron, we first per-
formed a one-way ANOVA on firing rates during the first 5 s of
context exploration events that preceded the presentation of the
objects. This analysis revealed that 26% of recorded neurons fired
differentially associated with the two contexts (Table 1). Exam-
ples shown in Figure 7A show that Cell 5 fired at twice the rate in
Context 1 compared with Context 2 for the entire context explo-
ration period (F(1,71) � 78.92, p � 0.0001), and Cell 6 had the
opposite preference (F(1,69) � 29.74, p � 0.0001).

In analyses of ensemble representations, RSA indicated that
correlations obtained between same-context exploration events
were significantly greater than those between contexts (within vs
between context, p � 0.0001; Fig. 7B).

Object sampling
To examine the evolution of position and object–reward repre-
sentations after the divider was removed, allowing the rat to ap-
proach the pot, population vectors were composed for 200 ms
time bins from 3.4 s before to 3.4 s after the onset of object-
sampling events of at least 500 ms. Ensemble coding for each time
bin was measured as the difference in average correlation coeffi-
cients between the same and different events belonging to the
same dimension (position or object), and the d
 metric (see Ma-
terials and Methods) was used to reflect the representational dif-
ference in each comparison. Position coding was apparent well
before the animal reached the object and peaked 400 ms before
the onset of object sampling (d
 � 1.21, p � 0.0001), then grad-
ually declined (Fig. 8). The decrease in position coding was coin-
cident with a sharp increase during object sampling in the coding
of different objects and their associated reward values, peaking at
800 ms after the onset of object sampling (d
 � 1.82, p � 0.0001).

The combined findings indicate a dynamic of population cod-
ing in which OFC ensembles first represent the context that de-
fines object and reward associations then, before object sampling,
the position of the animal, then the objects and their associated
values increasingly during object sampling.

Discussion
This study examined the role of the rat orbitofrontal cortex in the
retrieval of memories where the reward associations of events
depend on the context in which they were experienced. The pat-
terns of neuronal activity in OFC neurons and neuronal ensem-
bles distinguished the contexts in which objects were associated
with different reward values, then locations in which those objects
were presented, and then the object–value associations. Results ob-
tained during object-sampling events indicated that OFC networks
process all of the relevant event dimensions, including the objects in
each context and the locations in which they occurred, and their
associated expectancy of reward. Most striking was the similarity of
population representations of events associated with the same asso-
ciated reward value and strong pattern separation of the OFC repre-
sentations of events associated with different reward value,
suggesting actively separated networks. This observation is consis-
tent with previous reports that OFC neurons represent associations
between cues and the values of reinforcement outcomes for behav-
ioral responses to those cues (McDannald et al., 2005; Mainen and
Kepecs, 2009; Schoenbaum et al., 2009, 2011; Brown et al., 2010;
Walton et al., 2010; Padoa-Schioppa and Cai, 2011; Steiner and Re-
dish, 2012). Notably, however, in the design of the present study
distinct behavioral responses (dig or withdraw) were confounded
with specific reward outcomes (reward or nonreward, respectively).
So, we cannot unambiguously attribute the representations of re-
ward value from the overall outcome of the trial as a particular be-
havioral response leading to a specific reward value.

The present findings are also consistent with reports of OFC
neurons reversing their firing selectivity between stimuli when
the stimulus–reward associations switch (Rolls et al., 1996;
Schoenbaum et al., 1999). In context-guided memory, the stimu-
lus–reward associations “reverse” as a function of the surround-
ing context in which they occur, and the dramatic change in OFC
firing patterns during sampling of the same object between the
two contexts reflects this context-directed reversal in reinforce-
ment contingencies. OFC neurons not only represented the re-
warded object, but also showed firing selectivity to the object that
was not associated with reward within each context, consistent
with previous reports of the role of this region in representing the
value of the outcome associated with an event or response, re-
gardless of its affective nature (Ostlund and Balleine, 2007;
Schoenbaum et al., 2009). The present findings on firing patterns
during context exploration before object sampling also extend
earlier observations on OFC representation to the encoding and
retrieval of abstract contextual representations, or “states,” that
dictate a combination of object–reward associations during the
context exploration phase as well as a “mapping” of the contexts,
locations, and stimuli associated with specific behavioral re-
sponses that lead to distinct rewards (Wilson et al., 2014).

Recent approaches to ensemble representation have shown that
populations of neurons with complex firing patterns in dorsolateral
prefrontal areas of monkeys flexibly encode multiple dimensions of
experience that evolve during decision making (Mante et al., 2013;
Rigotti et al., 2013; Stokes et al., 2013), and several earlier studies have
identified multiple dimensions of events predicting outcomes en-
coded by OFC neurons in rats and monkeys (Furuyashiki and Gal-
lagher, 2007; Wallis, 2007; Mainen and Kepecs, 2009; Schoenbaum
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et al., 2009; Young and Shapiro, 2011). The representational similar-
ity analysis of neural ensembles in rodent OFC applied here provides
new insights into the structure of OFC network representation of
multiple task dimensions in the current task, revealing a systematic
organization of the relevant features of the stimuli and reward con-
tingencies consistent with a mapping of contextual cues and specific
stimuli associated with behavioral responses and the values of con-
sequent reinforcement outcomes envisioned by Wilson et al. (2014).
Events associated with opposite reward value involved strongly
pattern-separated representations. This observation indicates the es-
tablishment of distinct OFC networks—or schemas—that encode
events that were associated with reward and nonreward. The sepa-
ration of these schemas for opposing object–reward associations
could support the reduction of interference between events that
share object, position, or context features but lead to opposite out-
comes. Within each distinct value-based schema, objects in different
contexts that predict the same outcome are independently repre-
sented, whereas distinct objects that were not associated with reward
were coded as similar across contexts, suggesting that object–con-
text representation depended on reward status. Within each context
representation, events were separated by position within the context,
and finally, within each position representation, events having the
same object identity and value were encoded most similarly.

This representational organization is strikingly different from
the representation developed by the hippocampus in animals
performing the same context-guided object association task
(McKenzie et al., 2014; Fig. 9). The hippocampal network
strongly pattern separates events by the context in which they
occur, thus establishing distinct representational networks that
include both rewarded and nonrewarded events that occur in
different contexts. Within each distinct context-defined schema,
events are separated by the locations where they occur within a
context. Within representations of locations, events were sepa-
rated by reward value, and within representations of reward val-
ues, events were separated by object identity. Thus, whereas the
hippocampus develops a context-based schema, the OFC devel-
ops a value-based schema. The distinctive organizations of task
dimensions in OFC and the hippocampus suggest commonality
in the information contained in these brain areas and comple-
mentary organization of information processing relevant to this
paradigm.

These observations extend our model of prefrontal– hip-
pocampal interactions that support performance in context-
guided memory (Navawongse and Eichenbaum, 2013). This
model is based on the known anatomical pathways between the
prefrontal cortex and hippocampus, and on findings on the firing
patterns in the dorsal and ventral hippocampus. According to the
model, inputs from neocortical areas that process information
about object identity arrive in the hippocampus via the perirhinal

Figure 7. A, Activity of example neurons during context exploration. Cells 3 and 4 are examples of neurons whose firing patterns distinguished the two contexts. Rasters and perievent histograms
depict neuronal activity during exploration within each context. Time 0 is when the nose of the animal passed the entered context. B, Ensemble activity during context exploration. Within context,
Cross-correlations of population vectors taken between exploration events in the same context; between context, cross-correlations of population vectors taken between explorations of different
contexts. ***p � 0.0001.

Figure 8. Dynamics of position and object–value coding around onset of object-sampling
events. Correlation analysis was performed for 200 ms time bins starting at �3.4 s before
object-sampling onset and ending at �3.4 s after object-sampling onset, and ensemble dis-
crimination for each dimension was represented using the d
 metric (see Materials and Meth-
ods). Light shade over the first 500 ms highlights the minimum sampling duration.

Figure 9. Systematic organization of task dimensions by orbitofrontal and dorsal hippocampal
neuronal populations. Dorsal hippocampus organization based on the study of McKenzie et al. (2014).
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and lateral entorhinal cortex, whereas inputs about spatial con-
text arrive in the hippocampus via the postrhinal and medial
entorhinal cortex (Eichenbaum et al., 2007). These pathways
likely support a merging of object and context information within
the hippocampus. Correspondingly, in animals performing the
context-guided memory task studied here, within the dorsal hip-
pocampus, neurons rapidly form representations of objects in the
positions and contexts in which they occur (Komorowski et al.,
2009). More gradually, neurons within the ventral hippocampus
strongly distinguish events within each context but also generalize
across events and locations within each context (Komorowski et al.,
2013). Direct outputs from the hippocampus to both medial pre-
frontal cortex (mPFC) and OFC are generated in the ventral hip-
pocampus (Jay and Witter, 1991), suggesting that ventral
hippocampal context representations might be the source of infor-
mation to prefrontal cortex about the events that occur in each con-
text (although there are also alternative sources of context
information to OFC, e.g., postrhinal cortex; Agster and Burwell,
2009; Kondo and Witter, 2014). These inputs may support the OFC
in its development of abstract representations that map the set of
events associated with different reward values within each context.
During memory retrieval after learning, signals about the context
occupied may be sent from ventral hippocampus to OFC, regener-
ating the appropriate abstract context representation observed in
this study during the context exploration period. Mechanisms
within OFC may then generate the appropriate elements of the sys-
tematic representation of events in OFC during object sampling,
which then guides the dorsal hippocampus to retrieve appropriate
object representations based on associated reward value.

Notably, it is very likely that the mPFC plays a role in this
functional circuitry as well. The mPFC is essential to retrieval of
context-guided memories (Peters et al., 2013), including in this
task (Navawongse and Eichenbaum, 2013), and several studies
have shown that the mPFC is involved in rule switching (Birrell
and Brown, 2000; Floresco et al., 2008; Rich and Shapiro, 2009),
as well as rule-governed behavior (Wise et al., 1996; Miller et al.,
2002). In addition, rat mPFC, similar to its putative functional
analog primate dorsolateral prefrontal cortex (e.g., Brown and
Bowman, 2002; Wise, 2008; but see Vogt and Paxinos, 2014), has
neuronal firing patterns that distinguish contexts (Hyman et al.,
2012; Mante et al., 2013), and mPFC neurons respond differen-
tially when task response demands are altered (Rich and Shapiro,
2009; Durstewitz et al., 2010). The mPFC also receives input from
ventral hippocampus and is highly interconnected with OFC. Fur-
thermore, mPFC inactivation results in loss of object-specific re-
sponses in the dorsal hippocampus (Navawongse and Eichenbaum,
2013), and the critical influence of OFC is perhaps via its direct
connections with the perirhinal and lateral entorhinal cortex. The
complementary influences and nature of interactions between these
prefrontal areas in support of context-guided memory retrieval re-
main to be determined. One possibility is that mPFC and OFC may
differentially support context-specific rules associated with attention
or actions versus expected rewards, respectively (Sul et al., 2010).
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